
 
 

 

 

 

Time Series Analysis of High Resolution Remote Sensing Data 

to Assess Degradation of Vegetation Cover 

of the Island of Socotra (Yemen) 
 
 
 

Dissertation 

 
To Fulfill the 

Requirements for the Degree of 

„Doctor of Philosophy“ (PhD) 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

Submitted to the Council of the Faculty of Biology and Pharmacy 

of the Friedrich Schiller University Jena 
 

by 

M.Sc. Alhemiary, Abdulmaged 

born on 01.01.1968 in Taiz (Yemen) 

 

Jena, October 2016 
  

https://upload.wikimedia.org/wikipedia/commons/1/19/Uni-Jena-logo.svg


 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Defense Date: 04.05.2017 

 

PD Dr. Gottfried Jetschke, Head of the Dendro Ecology Group, Institute of Ecology, Friedrich 

Schiller University Jena, Germany 

PD Dr. Sören Hese, Head of the VHR Section, Institute for Geography, Department of Earth 

Observation, Friedrich Schiller University Jena, Germany 

Prof. Dr. Sebastian Schmidtlein, Heading the Vegetation Science and Biogeography Lab, 

Karlsruhe Institute of Technology, Institute of Geography and Geoecology 

  



I 
 

Content 

Introduction ............................................................................................................................... III 

Problem description .............................................................................................................................. III 

Objectives and aims of the study .............................................................................................................. V 

Thesis Organization ............................................................................................................................... VI 

Chapter 1: Theoretical background .................................................................................................. 1 

1.1. Characterization of ecosystems dynamics in semiarid regions ....................................................... 1 

1.2. Vegetation changes and their explanatory factors based on remote sensing investigations ............... 2 

Chapter 2: Study area and geographical location ................................................................................ 7 

2.1 Physiographical characterisation and ecological zonation ............................................................. 8 

2.2 Climatic characteristics ...........................................................................................................10 

2.3 Soils Characteristics ................................................................................................................11 

2.4 Vegetation ............................................................................................................................12 

2.5 Land use ...............................................................................................................................14 

Chapter 3: Data used and data pre-processing ................................................................................. 17 

3.1 Data collection .......................................................................................................................17 

3.1 Rainfall data and pre-processing ..............................................................................................17 

3.2 Satellite data .........................................................................................................................19 

3.3 Data pre-processing ...............................................................................................................24 

3.3.1 Geometric corrections ............................................................................................................25 

3.3.2 Noise and de-striping in image data ..........................................................................................26 

3.3.3 Atmospheric correction ..........................................................................................................26 

3.3.4 Multi Date Cloud Masking and Gap Filling ..................................................................................28 

3.3.5 Topographic data and DEM .....................................................................................................29 

3.4 Socio-economic data ..............................................................................................................29 

3.5 Maps and Field data ...............................................................................................................29 

Chapter 4: Methodology of data analysis ........................................................................................ 31 

4.1. Variability of vegetation distribution and change in space and time ..............................................31 

4.2. Methods of geostatistical analysis ............................................................................................31 

4.2.1. Autocorrelation ........................................................................................................................31 

4.2.2. Spatial autocorrelation .............................................................................................................31 

4.2.3. Kriging with an external drift.....................................................................................................32 

4.2.4. Convolution Spatial Filtering .....................................................................................................32 

4.2.5. Correlation coefficient ..............................................................................................................33 

4.2.6. Multiple correlation coefficients ...............................................................................................33 

4.2.7. Simple linear regression model .................................................................................................33 

4.2.8. Multiple linear regression model ..............................................................................................34 

4.2.9. Quantifying relationship between variables by analyzing spatial relationship ............................34 

4.2.10. Geographically weighted regression (GWR) ..............................................................................35 

4.3. Evaluation of vegetation cover’s changes in relation to the driving forces ......................................36 

4.3.1. Post classification comparison ..................................................................................................36 



II 
 

4.3.2. Unsupervised Classification ......................................................................................................37 

4.3.3. Supervised Classification ...........................................................................................................38 

4.3.4. Training stage and ground truth data ........................................................................................39 

4.3.5. Selection of Change Detection Algorithms ................................................................................40 

4.3.6. Change detection methods and requirements ..........................................................................41 

4.3.7. Estimation of the vegetation activity trends ..............................................................................42 

4.3.8. Vegetation index differencing ...................................................................................................43 

4.3.9. Vegetation covers change and its driving forces ........................................................................44 

4.3.10. Recognition of rainfall and anthropogenic signals in the vegetation time-series ........................45 

4.3.11. Analysis of regression residuals for identification of areas experiencing anthropogenic impact .46 

Chapter 5: Results, part 1 – Analysis of climatic conditions and NDVI .................................................... 47 

5.1. Network of climate stations in the study region .........................................................................47 

5.2. Statistical Analysis of Rainfall Data............................................................................................47 

5.2.1. The inter-seasonal variability of rainfall.....................................................................................47 

5.2.2. Rainfalls variabilities and seasonal trends .................................................................................50 

5.2.3. Within season trends of rainfall ................................................................................................53 

5.3. Variability of vegetation distribution .........................................................................................53 

5.3.1. Average characteristics of NDVI ................................................................................................53 

5.3.2. Inter annual variations difference vegetation index (NDVI)........................................................54 

5.3.3. Within season variations in NDVI ..............................................................................................56 

5.4. Dynamics of vegetation activity and rainfall relationships ............................................................59 

5.4.1. Temporal behaviour of rainfall and vegetation within the growing season ................................59 

5.4.2. Temporal behaviour of rainfall and vegetation between the growing season.............................60 

5.5. Modelling spatial patterns in rainfall parameters ........................................................................64 

5.6. Spatial distribution of (NDVI) and Rainfall in the study area .........................................................66 

5.7. Conclusion ............................................................................................................................67 

Chapter 6: Results, part 2 – Analysis of Vegetation Cover and Vegetation Change.................................... 69 

6.1. Classification of vegetation and description of the mapped Classes...............................................69 

6.2. Classification accuracy assessment ...........................................................................................77 

6.3. Analysis of vegetation cover: ...................................................................................................82 

6.4. Trend of vegetation change derived from classification ...............................................................83 

6.5. Detailed analysis of vegetation dynamic in the ecological zones ...................................................85 

6.6. Direction of vegetation changes ...............................................................................................88 

Chapter 7: Detection of climate and human-induced vegetation change ................................................ 91 

7.1. Effects of Human Activities in the island ....................................................................................91 

7.2. Conclusion ............................................................................................................................96 

Chapter General Discussion.......................................................................................................... 97 



III 
 

Introduction                                                                                                                  

Problem description 

Climate change is a global phenomenon that challenges both sustainable livelihoods and 

economic while adaptation is predominately site distinctive (Kangalawe and Lyimo, 2013). 

However, it’s effects have been recently recognized as a major force producing warmer 

conditions together with decreases of rainfall and increases of drought durations in many 

semiarid regions and therefore, its impact on vegetation types and distribution will be highly 

significant (Barlow et al., 2015). High quality information on the distribution, diversity and 

condition of native vegetation is an essential prerequisite for vegetation monitoring, mapping 

and an important tool for the natural resources management and land use planning to ensure 

better conservation approaches of the ecosystems. Vegetation is a key component of an 

ecosystem, however the use of advanced remote sensing technology has enabled researchers 

to quantify and qualify the amount and health of vegetation. 

As reported by Myers et al. (2000) who were engaged in biodiversity ‘hot spots’ assessment, in 

fact “almost all tropical islands fall into one or another hot spot”. This is because their high 

species endemism combined with proportionally extensive habitat loss and decline are 

becoming more common in vegetation, induced, among other factors by climate change (Wang 

et al., 2008b). Monitoring and mapping vegetation through remotely sensed images has been 

in development for decades. Rapid advancement of remote sensing technology has increased 

the quantity and the quality of spatial information and expands the horizon of our choices of 

imagery sources (Xie et al., 2008). However, the effects of atmospheric still restrain researchers 

to obtain an accurate relation of satellites spectral signals to the vegetation growth (Huang et 

al., 2009b).  

Socotra Island due to its long geographical isolation however, (Pichi-Sermolli, 1957, Popov, 

1957) stated that, nearly 30% of the plant species found on Socotra are believed to be endemic 

to the island. Until the 20th century, there was a scanty or rather heterogeneity and almost very 

little information and literature existed about the vegetation on the island.  

This isolation for at least 18 million years (Lisa M. Banfield et al., 2011) broke down in 1990 with 

the country unification in which then the island received much attention and subsequently 

several scientific knowledge of the local flora increased.  

However, the earliest explored record was provided by Isaac B. Balfour during his botanical 

exploration in 1880 (Brown and Mies, 2012a). Another effort was also made by Forbes, H. O. 

(1899), Bent, J. T. (1897), Wettstein, R. von (1906), Shinnie, Prof. P. L. (1960), [cited in; (Boxhall, 

1966)], (Engler, 1910) (Popov, 1957), (Hemming, 1966), Gwynne (1968) and Knapp (1968) [cited 

in; (De Sanctis et al., 2013)]. Their work as described by several authors mainly focussed on the 

description of the local flora and vegetation niche with no attention to the spatial and temporal 

vegetation distribution pattern or attempting to classify the plants.  

During the last decades numerous international oriented ecology conservation projects were 

initiated in Socotra in order to design more meaningful conservation strategy and sustainable 

development of the island, which have revealed several remarkable findings. These findings 

however, were achieved in different approaches with diverse aims and goals; (White, 1983), 
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(Friis, 1992), (Mies and Zimmer, 1993); plants and communities (Miller and BAZARA, 1996); 

physiognomy (Mies, 1999), (Mies, 2001), (Miller and Morris, 2001), (Kurschner and Ochyra, 

2004); plant inventory classification, conservation and sustainable use of the biodiversity; 

(Knapp, 1968); (Mies, 1999, Mies, 2001), (Miller and BAZARA, 1996). Most of these 

contributions remained fragmented and unsatisfactory as the evidence by (De Sanctis et al., 

2013) with lack of species characterisation and unsatisfactory classification of the plants and 

contained mainly synthesis of general descriptions of the vegetation without analysis of their 

distribution. Remarkable contributions can essentially be found in (Kilian and Hein, 2006), (Král 

and Pavliš, 2006), (De Sanctis et al., 2013) and (Attorre et al., 2011). 

Potential vegetation change in Socotra has long been significantly recognized (Myers et al., 

2000), (Brown and Mies, 2012a). Many of these species are currently threatened with 

extinction according to an assessment carried out by (Miller and Morris, 2004b) based on the 

IUCN classification system and criteria (Commission, 2001), (IUCN, 2010), (Král and Pavliš, 

2006), (Kilian and Hein, 2006) and (Brown and Mies, 2012a). 

Remote sensing data also have great importance in the studies from (Král and Pavliš, 2006) land 

cover map, (De Sanctis et al., 2013) classification and distribution patterns of plant 

communities, (Malatesta et al., 2013) vegetation mapping and (Attorre et al., 2014). Analysing 

the relationship between land units and plant communities’ recourse to them, however, either 

remained discrete or amalgamating, hence there is no reliable data on the composition and 

temporal distribution. Owing to those different approaches it is clear that the classifications 

and divisions of the vegetation are still hardly comparable to each other and all attempts have 

remained fragmentary and unsatisfactory. However, the comment by (Král and Pavliš, 2006) 

about the gap between the high level of knowledge achieved and the relevant mapping still 

applies today and created a severe problem to develop a conservation strategy for the island. 

Nevertheless, there is virtually nothing in their literature on these past conditions and 

processes as well as how they change spatially and temporally and in need of urgent attention 

(Paulay, 1994). 

After 1990, the island experienced rapid changes in development and constructions (e.g. new 

airport, harbour, and asphalt network roads) together with the massive expansion of 

population from the mainland. Those, however, created a pressure on the natural resources, 

vegetation and land use along with the effect of climate change, which increased the pressures 

on plant species and resource exploitation even more. Unfortunately, many of plant species are 

now confined to very small areas and thus are extremely vulnerable to habitat loss, overgrazing, 

and urban expansion (Miller and Morris, 1988). 

Understanding of local ecological communities however, requires further understanding of 

broad spatial and long temporal scales, the ‘‘regional-historical viewpoint’’ (Ricklefs, 1987). 

Nevertheless, (Santos et al., 2014) argued that, multi temporal analysis of accurate and timely 

vegetation data is a critical issue to understand its conditions in the past and the potential 

future on a climate change context and is essential to assess its development and for best 

understanding and monitoring the land use practices. So as to design more meaningful 

conservation strategy, comprehensive information on changes and distribution with time, is 

required (Hiers et al., 2012, Wiens and Hobbs, 2015). The present work aimed to provide such 

information.  
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Despite the fact that all earlier and present researches and exploration activities on Socotra 

have brought a wealth of information to document different aspects of the island’s vegetation 

and environment, a detailed characterization of the spatial and temporal distribution of the 

flora and vegetation types has to be made.  

Objectives and aims of the study                                                                          

The overall objective of this research will attempt to assess and examine the trends of 

vegetation changes since 1972 to 2010 with the Landsat high resolution imagery and to 

examine the related driving factors such as climate change, grazing pressure, and underlying 

spatial variability of the landscape. 

This is to answer the overall question: Is there a trend in biomass, cover and species 

composition on Socotra Island over the last 40 years? If so, is that trend associated with the 

rainfall patterns? What are the drivers behind the vegetation change? Then how can we define 

changes in patterns or changes in this landscape? 

Objective 1: To assess the long term trends in vegetation cover and analyse its spatial 

distribution using long-term time series of satellite data. 

Question 1.1  What is the trend and variability in vegetation cover in space and time? And what 

is the magnitude of total vegetation (NDVI) change per pixel over the island’s 

rangeland?  

Hypothesis The trend in vegetation cover on the island is varying and complex from place to 

place due to many variables.  

Methodology - Analyse the phenology of island vegetation using Landsat satellite data 

selecting key areas that depend on the different physiographic units (landform, 

soil, hydrology)and eco-zones, then analyse vegetation cover per type of unit.  

- Analyse the climatic data (in growing periods) for each meteorological station 

and analyse NDVI trends with NDVI residuals and rainfall.  

Question 1.2 Can the trend be explained by rainfall patterns, are there also some changes 

over time not related only to climate change? 

Hypothesis The trend in the NDVI is not only related to rainfall and the relation between 

rainfall and biomass is changing over time. 

Methodology Statistical relationships between rainfall, biomass and NDVI values will be 

integrated over the growing season. 

Question 1.3 What is the magnitude of the impact of the rainfall variability and human 

induced degradation on the vegetation pattern? 

Hypothesis  Human activities do more negatively impact the vegetation pattern than rainfall 

variabilities. 

Methodology - Investigate the NDVI vs. rainfall relationship and examine the trend over time.  

- Calculate the deviations of vegetation response to rainfall for each pixel during 

the growing season for selected years.  

Objective 2: Examine the dynamic changes in vegetation patterns for the period of 1972 to 

2010. 

Question 2.1 What are the main vegetation types to be distinguished? 

Hypothesis Unique remote sensing techniques can be used to categorise vegetation types. 
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Methodology - Satellite image, interpretation and classification. 

 - Ground truthing and field verification. 

 - Ancillary date analysing, manipulating and interpretation. 

Question 2.2 What is the magnitude of vegetation patterns change per each land unit? And 

what are the size and shape of these patterns? 

Hypothesis The size and shape of vegetation patterns are not regularly distributed in space 

and time. 

Methodology - Change detection technique. 

- Field study, onsite measurements, sampling…etc. 

Objective 3: Examine spatial heterogeneity in plant patchiness to understand the effects of 

landscape heterogeneity on vegetation across the study area. 

Question 3 Can the variation in rainfall explain the ongoing vegetation degradation? 

Hypothesis Change in rainfall cannot completely explain on-going land degradation. 

Methodology Analyse the temporal trend in rainfall and efficiency computed as the ratio 

between biomass and rainfall and also NDVI and rainfall. We then will analyse the 

trend of rainfall against the trend in vegetation cover. 

Thesis Organization 

The research questions under Q1 deal with the trend and variability in vegetation cover in space 

and time, and the magnitude of total vegetation (NDVI) change per pixel over the Island’s 

rangeland, and how the trend can be explained by rainfall patterns (as driving factor) over time, 

while the question Q2 deals with the magnitude of vegetation patterns change per each land 

unit or eco-zone, and with the size and shape of these patterns and human impact and it’s 

discrimination from the climate impact. Question 3 deals with the problem how the extent of 

slope and rainfall redistribution determine the vegetation pattern in the landscape, and what 

the relation between landscape heterogeneity and the rainfall distribution is. 

An introduction to drylands, their dynamics and problems of their investigation follows in 

Chapter 1. This section also deals with remote sensing approaches for investigating vegetation-

climate relationship. Chapter 2 provides an introduction to the study region. In Chapter 3 is the 

general framework and description of data used and pre-processing methods for the following 

subsequent sections are introduced. In Chapter 4 the statistical techniques and vegetation 

analysis methods and an overview of the model classification scheme are explained. In this 

chapter we also introduce the concept of discrimination between the rainfall and human impact 

as the main driving forces of vegetation change in the study area. Generally, Chapters 1-4 form 

the basis for the analysis of the data while the results follows in chapters 5-7. Chapter 5 as part 

1 of the result is focused on the analysis of climatic conditions and NDVI in the study area. This 

is to highlight and analyze the spatial and temporal locality variation within seasons and the 

inter-seasonal dynamics (Answer Q1 & Q3.1). Chapter 6 covers part 2 of the results, which 

reports the vegetation cover classification and vegetation type change (Answer Q2). Chapter 7 

deals with the detection of climate and human induced vegetation change (Answer Q1.3 & Q3). 

Chapter 8 as the last one provides a general discussion of the derived results with an outlook on 

the further development of vegetation monitoring as well as the potentialities of the 

investigated approaches and the further prospect which can be achieved by extended work. 
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Chapter 1: Theoretical background 

1.1. Characterization of ecosystems dynamics in semiarid regions 
The importance of biological diversity and biodiversity conservation was definitely recognized 

at the Earth Summit in Rio de Janeiro in 1992 and more than 130 nations signed a Convention 

on Climate Change and a Convention on Biodiversity. Changes in forest and vegetation cover 

are particularly severe in most of the arid and semi-arid regions and have significant global 

impacts on such debatable issues as vegetation degradation, biodiversity deterioration and 

climate change (Skole and Tucker, 1993, Southworth et al., 2004, Chen, 2002). The hazards of 

drought and desiccation heavily influenced the ecosystem dynamics of these regions (Olsson 

et al., 2005). Due to the adverse impacts of vegetation deterioration and land degradation on 

agronomic productivity, the ecology and the environment, and their effect on food security and 

the quality of human life, they remain an important global issue and will remain high on the 

international agenda in the 21st century.  Several studies have shown that in semiarid areas 

land degradation has had major effects on plant cover and biomass (Vinton and Burke, 1995, 

Wainwright et al., 2002, Oba et al., 2003, Trodd and Dougill, 1998).  

The United Nations Convention to Combat Desertification (UNCCD, 1994) defines the 

desertification in arid and semiarid areas as land degradation resulting from various factors, 

involving climate variations and human activities. The definition also considers the degradation 

as a “reduce or loss of the economical or biological productivity and complexity of agricultural 

land, or range, pasture, forest and woodlands resulting from combination processes of land 

uses including processes arising from human activities and habitation patterns” (UNDP/UNEP, 

1994). Semiarid areas due to (UNDP/UNEP, 1994) occupy approximately 17% of the global land 

mass. Examples from the United States (Brown, 2003) and (Van Auken, 2000); from Australia 

(Krull et al., 2005); from Patagonia (Aguiar et al., 1996) and from China (Cheng et al., 2007), 

argued that the change in the vegetation pattern such as invasion of grasslands in many 

semiarid areas by shrubs is a major form of land degradation. The strength of the tropical 

monsoon influences the vegetation distribution, both air temperature and rainfall variation can 

accompany vegetation change (Wang and Eltahir, 2000a, Wang and Eltahir, 2000b). Moreover, 

the extreme climatic events, extended droughts or large annual rainfall fluctuations associated 

with the global warming and the anthropogenic pressures collectively can also play a critical 

role in shaping the ecosystems (Holmgren et al., 2006), reduce the ability to regenerate 

vegetation cover in such ecosystems (Paul Reich, 2001) and might lead to self-organizing and 

patchiness on landscape (Aguiar and Sala, 1999). An extremely harsh climate and variable land 

use, such as decreasing rainfall combined with grazing, might suddenly shift the ecosystem 

towards degradation and desert conditions (Rietkerk et al., 2004, Scheffer and Carpenter, 

2003); catastrophic shifts (Skidmore and Prins, 2002, Baudena and Provenzale, 2008); sudden 

transition from a patchy perennial vegetation state to a state of bare soil (Scheffer et al., 2001) 

resulting in land degradation and severe runoff (see Stafford and Reynolds, [cited in; (Roder et 

al., 2008)].  

Arid and semiarid ecosystem dynamics is usually influenced by hazards of drought and 

desiccation (Propastin, 2007) and both temperature and rainfall play key roles in regulating 

plant biological processes. Thus, the vegetation cover is more heterogeneous and is highly 
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sensitive to climate fluctuations. The vegetation species in these areas present different 

adaptive mechanisms against the fluctuation of summer and winter temperature (Zunzunegui 

et al., 2005). Nevertheless, it is not clear what might be the response of these species to climate 

change and particularly to the temperature increase and rainfall decrease forecasted (IPCC, 

2001, Palutitikof, 2002 [cited in; (Giordano, 2007)]. Few studies have investigated the effects 

of climate change on the forests and shrub-lands of semi-arid areas (Barbero et al., 1990), 

(Lázaro et al., 2001), (Hulme, 2005), (Rotenberg and Yakir, 2010, Martin, 2006).In most cases, 

it can be concluded that the dynamics of productivity and species composition in the semiarid 

areas are believed to be generally controlled by external factors such as climatic variables, 

human activities, depletion of above ground biomass by herbivores and fire. The internal 

regulatory mechanism of the ecosystem is mostly weaker than the external mechanism. The 

ecosystem dynamics are essentially event-triggered with unsteady climate because of its high 

variability (Sullivan and Rohde, 2002, Herrmann and Hutchinson, 2005). 

1.2. Vegetation changes and their explanatory factors based on remote sensing 
investigations 

The spatial complexity and heterogeneity of the vegetation as well as limited access to the data 

source reduce the reliability of traditional ecology approaches to produce accurate results of 

monitoring. Taking advantages of the future imagery and its analysis methods is recently much 

recommended as most suitable method for vegetation studies in such areas.  

Multi temporal series of satellite data supply a wealth of information for monitoring 

environmental and vegetation pattern/changes (e.g. (Nemani et al., 2003, Turner et al., 2005), 

from regional to global scale. Therefore, use of series covering a timespan of more than thirty 

years might thus constitute a significant window of observation and has been firmly established 

(De Beurs and Henebry, 2005), only a limited number of these detection methods have been 

developed (Verbesselt et al., 2010). In particular, they can be used to gain insight into the 

complex mechanisms controlling the response of vegetation to climate variability. Moreover, 

remote sensing data offers unique opportunities to monitor changes in the vegetation cover. It 

provides the large spectral information, spatial and temporal scale necessary, even objective 

data (Bijker, 1997, Foody, 2003). Satellite-based Normalized Difference Vegetation Index 

(NDVI) data has successfully served as vegetative indicator in many studies. It was also a 

powerful tool in facilitating the advances of environmental monitoring strategies in the last two 

decades, particularly to understand the ecosystem variations and ecosystem changes as well 

as their causal relationships.  

Temporal and spatial correlations between NDVI and climatic factors are investigated in many 

research works. It showed well correlations both spatially and temporally with the rainfall in 

the semiarid regions (Richard and Poccard, 1998, Chen et al., 2004, Weiss et al., 2004). In 

Sudanese savanna, (Nicholson et al., 1990b) found a strong linear relationship between NDVI 

and rainfall variation on mean annual rainfall ranging 200–1200 mm for the western Sahel. 

Temporal series of satellite derived NDVI have been used by several scientists. (Xiao et al., 2005, 

Li et al., 2004, Tucker et al., 2001, Piao et al., 2003, Lunetta et al., 2006, Li et al., 2013, Shen et 

al., 2014) and also (Sarkar and Kafatos, 2004), (Zhang et al., 2004), (Volcani et al., 2005), (Stöckli 

and Vidale, 2004) and (Suzuki et al., 2006), among others argued changes in NDVI to reflect 

changes in biological activities. (Tourre et al., 2008) found relations between NDVI trends over 
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South America and climate change since 1981. Whilst for example, (Anyamba and Tucker, 2005) 

expanded the analysis of NDVI data on Sahelian vegetation dynamics as a proxy for the 

response of land surface to rainfall variability for the period 1982-2003, and detected drought 

and ‘wetter’ conditions that were in agreement with the recent region-wide trends in rainfall.  

However, there are some basic difficulties reported in using remotely sensed data to study 

vegetation change (Murwira and Skidmore, 2005, Petersen and Stringham, 2008, Phua et al., 

2008, Chehbouni et al., 2008, Zheng et al., 2008, Han et al., 2007) and many others). One of 

these involves extracting vegetation richness from measures of radiance, which is rarely 

measured in the field. The other leading methods, Vegetation Indices (VIs) and Spectral Mixture 

Analysis (SMA), attempt to quantify vegetation abundance in comparable units to field 

measures. Despite several studies derived vegetation cover using various methods on 

extracting and modelling data, not many of those studies built on such time series image 

processing data. (Roder et al., 2008) used a discrimination between evergreen, deciduous and 

mixed plantings to estimate aboveground biomass globally as an innovative mission to reduce 

uncertainties about net effects of deforestation (Le Bris et al., 2013) and forest regrowth on 

atmospheric CO2 concentrations (Hese et al., 2005a). However, the relationships between bare 

soil and soil’s colour and their effects on the NDVI are still more complex (Huete and Tucker, 

1991, Major et al., 1990, Todd et al., 1998, Mutanga and Skidmore, 2004). Nevertheless, the 

correlation between NDVI and above ground biomass is well established.  It has been reported 

by Nicholson et al. (1998) that NDVI is well correlated with parameters such as leaf area index 

(Darvishzadeh et al., 2008, Jensen et al., 2008, Tan et al., 2005), green leaf, biomass, vegetation 

cover, and also the NDVI/R ratio is regarded as a useful proxy for rain use efficiency (Davenport 

and Nicholson, 1993, Hountondji et al., 2006, Nicholson et al., 1990a). Moreover, trends in the 

NDVI/R ratio can be interpreted as a measure of possible vegetation degradation or revival 

(Hountondji et al., 2006). Majority of studies have focused on spectral indices to link properties 

of rangeland vegetation with remote sensing based assessments (Graetz et al., 1988, Todd et 

al., 1998, Moleele et al., 2001, Roder et al., 2007, Noomen et al., 2008, Cho et al., 2007, Joshi 

et al., 2006, Ferwerda et al., 2005). Others have successfully combined remote sensing based 

assessments of grazing patterns with grazing models for trend analysis and somehow pattern 

forecasting (Pickup, 1998, Pickup and Chewings, 1988, Mutanga et al., 2004). Several studies 

and techniques demonstrated the effectiveness of using satellite derived data in producing 

vegetation cover, land use/land cover maps as well as detecting the landscape change over 

time (Skidmore et al., 1997, Abou El-Magd and Tanton, 2003, Cardille and Foley, 2003, 

Skidmore and Prins, 2002, Lobo et al., 2004, Musaoglu et al., 2005, Garcia-Haro et al., 2005, 

Schmidt et al., 2004, Nangendo et al., 2007) and assessed the agreement and mapping 

uncertainties in existing global 1 km datasets land cover mapping (Herold et al., 2008). 

However, estimation of overgrazing risk in semiarid areas remains difficult (Diouf and Lambin, 

2001, Hountondji et al., 2006, Ruelland et al., 2008, Leenders et al., 2005) and a number of 

issues such as spatial variability due to fuel-wood cutting, topography, soil types and different 

socio-economic triggers and land use activities which influence vegetation growth and 

distribution need to be considered and have to be addressed before an optimal result can be 

achieved. Nevertheless, due to the complexity and the heterogeneity of semiarid areas 

environments however, there is still a lack of methodologies adapted to its fragmented 
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rangelands and biodiversity setting (Western et al., 2004, Shoshany, 2000, Ruelland et al., 2008, 

Squires and Sidahmed, 1997). 

Attempting to understand ecosystem dynamics by the earlier researches have largely been 

carried out within the disparate disciplines of ecology, which has led to substantial limitations 

(Muller, 2007, Bracken and Croke, 2007, Turnbull et al., 2008a). However, the current 

understanding of semiarid vegetation trend and ecological interactions across multiple space 

and time scales may be developed by exploring degradation within the cusp-catastrophe 

framework (Vanbreemen, 1993, Shoshany et al., 1995, Turnbull et al., 2008b). This is requiring 

that biotic and abiotic elements of the ecosystem to be understood in terms of both their 

structure and function, with respect to the connectivity between these elements in spatial and 

temporal terms.  

Scientific literature, however, reveals several existing change detection techniques. Myneni et 

al. (2001) used seasonally integrated measures data to determine biomass with high spatial 

resolution at the continental scale using NDVI. Coppin et al. (2004), minimized seasonality 

variation by focussing on the growing season. Eriksson et al. (2003) correlated Synthetic 

Aperture Radar (SAR) data to biomass, (McCallum et al., 2010) compared four global FAPAR 

datasets, (Wagner et al., 2003) combined ERS tandem interferometric coherence and JERS 

backscatter. Hese et al. (2005b) mapped global biomass with respect to carbon cycle, 

(Bontemps et al., 2008) and (Fensholt et al., 2009) summarized temporally time series data, 

while (Healey et al., 2005), used normalizing reflectance values per land cover type. The 

comprehensive review of methods and the results of change detection by Coppin et al. (2004) 

and (Martínez and Gilabert, 2009) showed, however, that most existing methods focus on short 

image time series. 

There is whole literature about the plant-soil relations for ecosystem functioning and self-

organization, but I think it will be very difficult to prove in light of spatial variability of the 

environment. Therefore, we will not take that into account as a driving mechanism. We will 

point out the potentiality of studying vegetation pattern for monitoring the impacts of climate 

variability and human activities on this fragile area bordering hot arid region. We need to 

acquire a greater understanding of the interacting processes that maintain resilience and the 

factors that are currently limit the distribution of vegetation species. Particularly physiological 

and environmental factors and sophisticated predictive model may improve our understanding 

of vegetation and climate interactions in this area. We also will examine the distribution of the 

vegetation patterns depending on the duration of the wet season even with fixed total annual 

rainfall showing how seasonality affects the vegetation patterns. 

Socotra Island is the largest Yemeni island, located in the Indian Ocean. Due to the high level of 

plant endemism, Socotra is placed among the most important islands in the world and among 

global biodiversity hotspots (Scholte et al., 2011, Malatesta et al., 2013). The island is strongly 

affected be the Indian Ocean Monsoon (Escadafal et al.) (Fig. 1) which is one of the major 

weather systems of the earth, affecting one of the most densely populated areas of the world 

(Fuchs and Buerkert, 2008, Burns). Rainfall seems to be the most important factor affecting life 

and the ecology in the island. Nevertheless, from experience in the study area, changes in the 

technology, tourism industry, new investments and development of infrastructure, rather than 

rural population increases, seem to play also major rules on breakdown of traditional land use 
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and land management practices creating the erratic plants patterns and leading to deteriorate 

the vegetation cover and then increased degradation in the landscape (Hobbs et al., 1995). 

Nowadays, several authors 

have recognised that 

traditional land use 

management practices have 

currently changed with 

urbanization enforcement 

(Pietsch, 2007). A new road 

network increased 

accessibility around the 

island and more people 

moved (internal migration) to 

Hadibu, the capital of island. 

Such trends also create 

patches of new settlements. 

The present building boom on 

the island is placing great 

pressure on timber and all 

trees. The understanding of the interactions between human activities related causes, land use 

and vegetation in their spatial and temporal distribution (Gregorio and Jansen, 1997) is 

fundamental to understand and predict changes in that landscape. Unfortunately in many 

instances vegetation cover and range management are not a priority of governments (FOWECA, 

2004). This situation increased the marginalization of the resource and dependent 

communities. The importance of this research is laid on its innovative way of defining the 

catastrophic destabilization over landscape. It will be more oriented towards specific 

management, future conservation strategies and policy issues, such as the requirements of 

endemic and threatened species; the impact of grazing on endemic plants and on rangeland 

requirements; the impact of invasive species and to help understanding the rule of runoff, on 

plant distribution on the landscape. 

Meanwhile, the vegetation cover in the study area has been deteriorated since the 1970s due 

to the rainfall scarcity and the excessive human activities mainly, including overexploitation of 

vegetation and overgrazing and consequently resulting in great overall in ecosystems changes. 

However, there has been much debate whether the extinction, annihilation and lack of 

regeneration of dragon blood and frankincense trees result from the goats and overgrazing or 

from climate (Mies, 2001), (Adolt and Pavlis, 2004), (Miller and Morris, 2004a), (Attorre et al., 

2007), (Scholte et al., 2008), (Habrova et al., 2009) and (Scholte et al., 2013). This challenge has 

been recently raised and threatened the safe existence and sustainable development bringing 

the great attention to the environment deterioration problems. The overgrazing we are 

mentioning here includes that, these activities occur often in the form of clearing lands of 

woody vegetation for fuel, construction and charcoal trading.  

In order to characterize the complexities of land degradation and vegetation deterioration in 

the study area, we need to detect the role of different land use and grazing practices in 

Figure 1:  Indian 

Ocean Monsoon 

(Escadafal et al.) 
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impacting vegetation cover, biomass, patterns and species compositions and then define the 

trend change spatially and temporally in the heterogeneous landscape (Fig. 2). 

 
Figure 2: Schematic flow diagram how different land use and grazing practices impact vegetation cover 

and create a trend in a heterogeneous landscape 

 

Some individual patterns of species and trees in the study area are seen to follow the drainage 

lines and seem to be affected by grazing but there are also individual trees. Some of these 

patterns are in dynamic changes, to follow the geological depression and are on one hand side 

related to flow patterns of water and others to species behaviour and grazing.  So it is not quite 

easy to come to a decision whether these changes result mainly from degradation. In such a 

landscape it could be valuable to come up with indicators and good recipes or methods to 

determine change. In order to develop the strategies of retrieving the vegetation and 

preserving the island, the deterioration process of vegetation must be documented clearly. In 

this study, multi temporal and multi sensor Landsat MSS, TM and ETM+ images data derived 

series of Normalized Difference Vegetation Index (NDVI) for the period 1972 - 2010 were used 

quantitatively to examine the dynamic vegetation changes and their inter-seasonal variability. 

The integrated NDVI during the growing period (GP) data are compared with rainfall (R) data in 

the island from 1972 to 2010. Trend analysis is then applied on the obtained time series of this 

indicator in order to identify areas suffering from desertification.  
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Chapter 2: Study area and geographical location 

Socotra is the largest Yemeni island, situated in the Arabian Sea around 400 km south of the 

Arabian Peninsula. It lies between the latitudes 12o 8’ – 12o 42’ north of the equator and the 

longitudes 53o 19’ – 54o 33’ east of Greenwich (Fig. 3), with an area of 3607 km2 approximately 

120 km long by 35 km wide. It is comprised of a basement complex of Precambrian igneous and 

metamorphic rocks, overlaid by younger limestone and sandstone sedimentary rocks 

(Cumberlidge and Wranik, 2002). Generally, three main stratigraphic geological units dominate 

Socotra Island. Paleocene-Eocene plateaus extend in the middle altitudes all over the island and 

overlay the Proterozoic-Paleozoic granitic basement. The latter can be found in Haggeher 

massif and in Qalansiyah and Ras Shúab in the westernmost part on the island. It is also reported 

that the highest part of the Haggeher massif was never submerged since the Cretaceous 

(Fournier et al., 2007), moreover, marine fossils can be found on limestone plateaus up to 800 

m a.s.l. Mesozoic outcrops is the second geological feature rising along the main wadis and 

steep edges of Paleocene-Eocene plateaus (Fournier et al., 2007). Third, the lowest parts of the 

island consist either of Quaternary Formations and or might be interpreted according to same 

reference as Oligocene-Miocene or Lower Cretaceous strata.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Basic structure of Socotra Island 

(topography, main roads; top) and it’s location 

in the Arabian Sea (left, encircled) 

 

 

The population is considerably under potential expansion. It has been estimated with 11.220 

according to (Brown, 1966), 30.000 according to (Wranik, 1996), and 80.000 according to (Al 

Sagheir and Porter, 1996) and according to the latest CSO census survey even up to 120.000 

(Organisation, 2007). People living in the island subsist mainly on fishing, the cultivation of date 
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palms and pastoralism for their livelihood. The island has a semiarid tropical climate (Pietsch 

and Kühn, 2009) with average annual rainfall of 120 - 400 mm. This quantity fluctuates to a 

great extent from one year to another and there is little seasonal change in temperature with 

the mean daily temperature ranges of about 250-28oC. 

2.1 Physiographical characterisation and ecological zonation 

Due to the purpose of their studies many authors have contrarily categorised the physiography 

features of the island. Dividing the island landscape into variously sized ecological units might 

be important and have significance both for resources development and environment 

conservation (Bailey, 1983). Such units can be used as a base for estimating ecosystem 

productivity and the probable responses to management practices, thus reflecting the influence 

and reaction between the climate, vegetation and soils and, to a lesser degree, the fauna. Such 

approaches depend on prior knowledge of functional relationships between site parameters, 

ecosystem and the specific form of biological production. 

Because of the complex topography and the large climate range throughout the island, and for 

the purpose of investigating the vegetation distribution with relation to their latitude location 

and climate-ecological interaction, we used the results of all previous authors’ works as a 

guidance to divided the entire area into six ecological subregions (Figure 4). 

 The central mountains: Igneous Haggher is the most important and the largest 

mountain located at the eastern part of the island, overlooking the island with capital 

Hadiboo. It extends north easterly to south westerly at a distance of 25 km with their 

jagged granite highest peak Daksam with 1630 m. Haggher mountains rise from 750 to 

1500 m on a granitic substratum (BEYDOUN and BIGHAN, 1969)  covered by Cretaceous 

and Tertiary limestones                

 Hillslopes: A semi-arid upper zone, surrounding the central mountains to the east, west 

and south, covering most of steep slopes averaging 450-750m in altitude interspersed 

with hills and small plains. They drop away at the edges in steep cliffs and are eroded 

on the surface into karst topography. 

 High plateau: Arid limestone zone plateau. A transition zone between the alluvial 

substratum and the upper limestone area ranging 250 – 450 m above sea levels with 

the surrounding limestone areas dating to the mid-Tertiary.   

 Low plateau: Dissected limestone plateau, it occupies most of the internal areas of the 

island, ranging from 110 to 250 m and dissected from north to south by several 

ephemeral wadis. 

 Wadis (valleys): Several streams run into the island with running water which 

sometimes incised deep canyons into the slopes of the Haggher massive in the south-

west direction. The most important are Tatrat and Azroo valleys, which are intersecting 

the island from north to south. They often have only irregular runoff that occurs during 

the rainfall and it might last for few months per year, whereas the rest time of the year, 

their beds fall dry or lead only a few amount of water. In addition, several springs are 

also running along the year from the Haggher Mountain. 

 Coastal plains: The arid coastal plains are mainly located on an alluvial substratum, 

intersected plains. Situated in the north and south of the island, while the drift in the 
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east and west parts of the island extended to the coast. The southern coastal plain, 

which is 4 - 7 km in width, stretches over approximately 60 km along the southern coast. 

It is terminated northwards by a precipitous escarpment averaging about 110 m in 

elevation. Southwards it descends in terraces, the marine sediments of which meet a 

strip of dunes at the shoreline and continue at a shallow gradient over at least 15 km 

out into sea. A much more irregular coastal plain occurs in the north, backed by the 

deep slopes of the plateau edge. This plain is less barren than the southern plain and is 

interrupted to the east by a number of headlands which break it up into several small 

enclosed fertile areas to the north of the Haggher range, characterized by shrubland 

and grassland communities. 

Figure 4: The six major ecological zones of Socotra. 

 

Due to its discrete and isolated nature, the island has a diversified sparse vegetation and 

uniqueness of diverse endemic plant species with local adaptations and radiations (Lisa M. 

Banfield et al., 2011) dominated by Halophytes, Croton socotranus, Jatropha, Euphorbia and 

succulent shrubs, bottle trees, frankincense trees, and dragon’s blood trees (Mies, 2001); (Le 

Houerou, 2003); (Miller and Morris, 2004a); (Attorre et al., 2007). 

Furthermore, there are several distinctive vegetation formations on Socotra, particularly with 

respect to their physiognomy and structure. The (IUCN, 2008) has reported that 37% of 

Socotra’s 825 plant species, 90% of its 30 reptile species and 95% of it’s land snail species are 

not found anywhere else in the world. The site is also well-known with 192 land and sea birds 

species, 44 of which breed on the island, while 85 are regular migrants (UNISCO, 2008), 

including a number of threatened species. The marine life is also very diverse, with 730 species 

of coastal fish, 253 species of reef building corals and 300 species of crab, lobster and shrimp 

(source: http//whc.unesco.org/en/list/). 

However, (Sindaco et al., 2012) mentioned that the island is one of the most remote and most 

biodiversity rich and distinct islands in the world. In 2008, it has designated by the UNESCO as 

a World Heritage Natural site. Despite the richness in fauna and flora with a high level of 

endemicity, only little is known about its biodiversity and the biogeographical distribution of 

most of the islands’ species (Sindaco et al., 2012). 
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2.2 Climatic characteristics 

The island is sited in the arid tropical zone where generally evapotranspiration greatly exceeds 

the rainfall and is subjected to intense summer monsoon activity (Fig. 5) which has created a 

seasonal period of isolation. According to (Bruggeman, 1997) Socotra is located in the Zone 14 

of Agro-climatic zones of Yemen where potential evapotranspiration varies between 3.5 

mm/day during the cool period and 6.5-7.5 mm/day during the months June to August (Fig. 6). 

The average total amount of evapotranspiration per year is about 1750 mm/year. 

Long-term detailed climatic data is lacking ((Scholte and De Geest, 2010), with only scarce 

information covering a few years. Average air temperatures range from 23.5 °C in the coolest 

to 35.0 °C in the hottest months of the year. During summer, temperatures can exceed 40 °C 

at noon with relative humidity more than 70% (Bruggeman, 1997), and fall no lower than 25 °C 

at night on the coastal plain and in the lower parts of the interior of the island. There are two 

annual rainy monsoon seasons, which are related to the two main annual wind directions 

(Haake et al., 1993). From August to October, the South West monsoon brings occasional heavy 

rains (Rathjens et al., 1956), (Villwock, 1991) and (Mies BA, 1996). Additional intense down-

pours causing flash flooding of coastal wadis occur from November to January, while the 

smaller rainy season takes places in April and May, driven by the winter half year’s NE trade 

winds.  

 

 

 

 

 

 

 

Figure 5:  Stream pattern of winter monsoon (Scholte et al.) and summer monsoon (right) in the western 

Indian Ocean (Adapted after (Fleitmann et al., 2004). 

Rainfall in Socotra is unpredictable in time and space and greatly affected by the Indian 

monsoon strength and diminish (Fleitmann et al., 2007, Fleitmann et al., 2004). Some 

measurements of rainfall, temperature and wind were started earlier in the last 19th century 

(Kerr, 2004) and (Popov, 1957). About 11 automated weather stations with some other rainfall 

gauges were installed during last decades by Socotra Conservation and Development 

Programme (SCDP). There is still an irregularity in collection of data and only a limited data is 

available. 

Climate change on Socotra due to (Attorre et al., 2007) has been projected to cause 

considerable aridification on the island and is expected to put further pressure on it’s ecological 

system. A review of local climate knowledge and data collected (Scholte and De Geest, 2010) 

showed considerable variation in the mean annual rainfall among those stations and also 

illustrated the gaps of sequence climate data knowledge. It is generally revealed that the winter 
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rain (October to December) is higher than the summer rain (April to May) with the maximum 

rainfall reached in December, whereas generally no rain is available during July and August 

(Scholte and De Geest, 2010, Mies, 1995).  

 

 
Figure 6: Annual pattern of climatic variables of Socotra (After Chen and Chen 2013) source: (Scholte 

and De Geest, 2010) 

2.3 Soils Characteristics 

Large parts of the island are comprised of a basement complex of Precambrian igneous and 

metamorphic rocks, overlaid by Tertiary limestone and sandstone sedimentary rocks 

(Cumberlidge and Wranik, 2002). The soil parent material due to the recent survey by (Board, 

2003) consists of limestone plateaus and basins, granite basement, wadis and alluvial plains.  

The north-eastern part is dominated by crystalline rock, including granites which make up the 

Haggher Massif formed by pre-Cambrian and Palaeozoic (Birse et al., 1997), the easternmost 

parts predominate of carbonate with thicknesses from the Triassic and Jurassic era Bott et al., 

(1994) and Samuel et al.,(1997) [cited in: (Birse et al., 1997). These fragments indicate strong 

chemical weathering, preceding erosion, and redistribution. 

No soil data of Socotra island existed so far, except for a basic work in three areas in the 

northern part carried out by Pietsch during 2008 and 2009 to determine the development of 

most distributed soils (Pietsch and Kühn, 2009). The soil in Socotra is similar to those in the 

semiarid region soils which possess unique characterization distinguishing them from other in 

humid regions. It is commonly poor in organic matter, high alkalinity in reaction, richer in iron 

and generally rich in bases-especially in soluble salts with high concentration of calcium 

carbonate. The later can be accumulated in the form of individual nodules or of a continuous 

crust in the soil profile. Soil profile has commonly a weak or moderate structure development 

with coarse texture and is somehow covered by surface stones or gravel (Dregne, 2011). The 

main factors affecting the soil formation in these areas are climate, vegetation and biological 

activity ((Verheye, 2006).  
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In the World Reference Base Taxonomy, these soils generally belong to the order of Aridisols. 

However, results of soil investigations on Socotra by (Pietsch and Morris, 2010) and our random 

representative sampling, showed that the island is poor in soil resources with heavy texture 

range from clay to silty clay loam in the intermountain plains and the wadies respectively with 

shallow or even strongly calcified (crusting by calcification). Cambisols and Calcisols are the 

most common soil classification orders with Haplic, Petrocalcic or Hypercalcic horizons in the 

lower part of the soils such as in Homhil basin and Ayhaft (Pietsch and Lucke, 2008). 

Furthermore, due to the same study, Calcium carbonate is found at a depth of up to 30 cm in 

52% of the layered soils (Table 1). The coarse fragment content lies between 0 and 78%  with 

many surface stones, where Calcisols are often present silt, comprise 40–80% and between 

30% and 60% clay (Pietsch and Kühn, 2009)see Fig. 7 profile picture).  

Wadi Ayhaft 1 (cmolckg–1) 

Depth cm Sand % Silt % Clay % Texture OM% CaCo3 % CEC (cmol/kg) pH 

0-38 7.4 27.4 65.2 Clay 1.12 5.1 33.7 7.9 

38-80 15.2 73.8 11.0 Silty Clay Loam 0.34 81.1 10.3 8.8 

80-125 15 75 10 Silty Clay Loam 0.21 77.5 6.0 8.8 

Homhil 9 

Depth cm Sand % Silt % Clay % Texture OM CaCo3 % CEC (cmol/kg) pH 

0-5 19 46.7 33.4 Silty Clay Loam 0.95 3.2 21.6 8.5 

5-25 24.4 28.8 46.8 Clay 0.83 17.9 20.5 8.6 

25-75+ 24 29.3 46.6 Clay 0.5 27.5 13.4 8.6 

Table 1. Soil contents on two sites and classification. 

 

Depth 
(cm) 

Soil profile description 

0-40 Red (2.5YR4/6) moist, slightly humus, moderately calcareous, 
heavy clay, sub-angular blocky structure, diffuse iron, 1mm Fe-
Mn Concentrations, bioturbation.  
Substrate red cover clay on slope without detritus, undulating 
abrupt boundary. 

40-80 Yellow (10 YR7/6) moist, slightly or sparsely humus, extremely 
calcareous, silty loam, coherent structure, patches of 
secondary carbonate concentrations, bioturbation. 
Substrate carbonate coherent cover loam and slope with much 
detritus, unclear diffused boundary. 

80-125 Radish yellow (5YR6/8) and slightly yellow (2.5Y8/2) moist, 
sparsely humus, extremely calcareous, silty loam, massive, 
coherent patches of secondary carbonates, single carbonate 
concentration. 
Substrate carbonate cover loam with slope detritus, inclined 
clear boundary. 

>125 Parent material (mostly limestone) 
Figure 7:  Haplic Cambisol (Clayic, Calcaric, Rhodic) above Hypercalcic 

Cambic Calcisol (Thaptocambic,Sodic) [Vertic Haplocalcids]. ( After (Pietsch 

and Kühn, 2009). 

2.4 Vegetation                                                                                                     

Due to its endemic biodiversity, Socotra is currently being described as the “Galapagos of the 

Indian Ocean” (Elie, 2014). It has been ranked as a fourth place among the ten richest of the 
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world's oceanic islands that are distinguished by the richness of their biodiversity. The island 

has reported as a unique in its flora and therefore, a home to diverse terrestrial plant and 

animal life with a high number of species and endemism found nowhere else on the earth 

(Alexander and Miller, 1995). This high species level of endemism as also reported by (Miller 

and Morris, 2004b) inventory, hosts 825 species of vascular plants, of which 308 (37%) are 

endemic ((Miller and BAZARA, 1996). Out of the eighteen plant genera endemic to the Arabian 

Peninsula, ten genera are restricted to the Socotra archipelago (Miller and Morris, 2004b). The 

figures for botanical diversity confirm the Socotra Archipelago’s global status as one of world’s 

most botanically important island groups, comparing favourably in floristic richness and 

endemism with such famous islands as Mauritius, the Galapagos and the Canary islands 

(Rössler, 2006). The essential statistics for the Flora of the Socotra Archipelago are summarised 

in table 2 below. 

Species No. 

Flowering plants and ferns species  850 

Flowering plants and ferns genera  389 

Flowering plant families  99 

Endemic taxa  293 

Endemic genera 12 

Table 2. Plant richness in Socotra (After (Rössler, 2006) 

The island received much attention from collectors during the late 90’s and in the beginning of 

the 2000’s. The Government developed major strategies such as the Socotra Archipelago 

Master Plan and the Biodiversity, Ecotourism, Women and Environment strategies. Parallel to 

this, the public awareness and concern have grown, supported by the increased NGO activity 

and the media involvement in environmental issues. 

The existing literature on Socotra has revealed valuable information (Table 3) on the vegetation 

and it can be widely categorised associated among the four main topographical zones. The 

majority of woody species forming natural forest in the island are woodland and shrub 

communities which rank among the endemic species. Among important and valuable of them 

are arborescent dragon´s blood trees (Dracaena cinnabari) which is mostly located on the high 

altitude plateau and mountain areas and is a source of gum resin, frankincense trees (Boswellia 

ameero, B. elongata, B. dioscorides, B. popoviana, B. nana, B. socotrana), myrrh trees 

(Commiphora socotrana, C. ornifolia, C. parvifolia, C. planifrons), arborescent spurges 

(Euphorbia arbuscula, E. socotrana), the rare endemic shrub Dirachma socotrana and the wild 

pomegranate species (Punica protopunica). Typical of Socotra are remarkable succulent woody 

species, particularly the endemic cucumber tree (Dendrosicyos socotrana), the only woody 

species from the family of Cucurbitaceae, desert rose (Adenium obesum ssp. sokotranum) and 

endemic Dorstenia gigas from the family of Moraceae rarely growing on shady rocks. Also fauna 

of Socotra is rich in species and little investigated yet (RAP-CMO, 2004) and (MWE-EPA, 2004). 

The vegetation societies are mainly stressed by water shortages and have developed 

adaptations to cope with this phenomenon ). 
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Land form Geology Associated Species 

Mountains Limestone 
Granit 

 

Dracaena cinnabari, Buxus hildebrandtii, Croton sp. and Rhus sp., 
Tamarix sp., Ormocarpum caeruleleum, Mussoenda capsulifera, 
Jasminum grandiflorum, Porana obtuse, B. elongata , B. pedicellatus, 
B. ameero, Euclea divinorum and Hypericum scopulorum. 

Plateaus  Croton socotranus, Dracaena cinnabari, Buxus hildebrandtii, 
Heliotropium nigricans, Corchorus erodiodes, Trichocalyx obovatus, 
Rhus thyrsiflora, Aloe perry, and Pulicaria stephanocarpa. 

Coastal 
Plain 

 
Sand, Alluvial 

Limonium axillare - Atriplex griffithii, Croton socotranus - Cissus 
subaphylla, Aizon canatiensis, Salsola sp., Salvadora persica, Indigofera 
nephrocarpoides,  Panicum rigidum, Acacia edgeworthii, Tamarix 
nilotica, Limonium socoranum, robecchii, Justicia rigida, Jatropha 
unicostata, Pulicaria stephanocarpa, Dendrosicypos socotrana, 
Limonium axillare - Atriplex griffithii, Croton socotranus - Cissus 
subaphylla, Aizon canatiensis, Salsola sp., Salvadora persica, Indigofera 
nephrocarpoides,  Panicum rigidum, Acacia edgeworthii, Tamarix 
nilotica, Limonium socoranum, robecchii, Justicia rigida, Jatropha 
unicostata, Pulicaria stephanocarpa, Dendrosicypos socotrana, and 
Adenium obesum subsp. sokotranum. 

Wadies  Croton socotranus, Cissus subaphylla, Jatropha unicostata, Pulicaria 
stephanocarpa, Dendrosicypos socotrana, and Adenium obesum subsp. 
sokotranum. 

Table 3. Dominant species corresponding to the geological features and land form type. 

2.5 Land use  

Land use is not consistent throughout the islands. Socotra as stated by (Morris, 2002) must be 

viewed as a mosaic of different traditions, conventions and priorities. Thus what is found and 

is a practice to be true for one area will not necessarily be found to be so for another. The rich 

diversity of flora and fauna is mirrored by an equally rich diversity of human behavior and 

custom. Thus what is regarded as suitable human food, for example or what is seen as a useful 

medicinal or veterinary practice, what an appropriate response to drought, what takes priority 

over something else even what is seen as good browse for livestock can be expected to differ 

from area to area. Traditional land management practices have played major roles on the 

survival of flora and vegetation during the last decades (Scholte et al., 2008). Socotranis people 

live in the island and subsist mainly on fishing, the cultivation of date palms and pastoralism for 

their livelihood. Milk and date palms are the most important food on the island and therefore, 

goats, sheep and cattle, are the main source of economic production for the people in rural 

areas (but not coastal areas, (Scholte et al., 2008)). Newly many spread home gardens 

introduced for family need vegetables and fruit. All the livestock species in the island are well 

adapted over many centuries to the peculiarities and rigours of the Socotra terrain and climate 

(Morris, 2002). However, major developments in land use have taken place with the starting of 

the SCDP 1997. There was an increase in inventories of the terrestrial and marine environments 

and land use (Mies, 2001, Morris, 2002, Wranik, 2003, KRUPP, 2004, Miller and Morris, 2004a). 

After 1990, the land use system of the study area experienced a change similar to collapse. The 

collective and state farm ownerships were abolished. The people, having been discharged by 

herding, left their settlements and moved into the nearest cities hoping to find a job (Fig. 8). 

Numerous settlements were fully abandoned and nowadays stay uninhabited. 
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Figure 8: Trace of the radical changes in land use in the island, (a) abandoned rural areas, (b) new 

urbanization system. 

Change in land use practices   

Over the last few decades, the island experienced a great trend for people to settle in towns 

and villages. The increased arrival of great numbers of people from the mainland with division 

of land between the tribes has increased land value and resulted in an increase in land 

ownership conflicts. This has caused more pressure on some areas (Morris, 2002) and less 

movement of livestock. The expanding roads network has triggered a new type of movement 

and livestock widely undertaken by cars. Although, little is known of its impact, but it is likely 

that the more accessible areas experienced an increased grazing pressure (Morris, 2002). Land 

use management has also greatly changed and the pace of this change is accelerating and many 

of the traditions procedures and skills have either already been lost or are undergoing change 

(Miller and Morris, 2004a). However, Socotra’s pastoralism and care of domesticated livestock 

regarding herd care and mobility history is reflected in the inherited learned knowledge and 

land tenure system. This has been highly influenced with the increasingly newly permanent 

land uses, such as tourism and agriculture, urbanization and land rights being claimed and are 

often a source of land use conflict (Scholte et al., 2011). 

During the decades of Socialism, the common areas were considered public property that 

everyone could use but no one cared for. Since the collapse of the Soviet Union followed by the 

country unification on 22nd May 1990 people have gained the possibility to own their 

properties. As the next step after the privatization of land and housing, the management of 

land is now being transferred from the public sector to the private sector. This has encouraged 

the new market-oriented housing, tourist and urbanization system which is being built on the 

legacy of the land and grazing areas and which has a great impact on the current situation. 

Changes in land ownership and land use 

The island tends to have high population density with intensive land uses in which the need for 

importing products arises, associated with high rates of introduced species for food, wood and 

medicines, or as ornamentals. However, increased population pressure on land enhances the 

importance of private tenure and decreases the importance of community rights. 

As results of the political transition in the early 1990s, there was a radical transformation in the 

conditions of proprietorship and the establishment of private property as the dominant form 

a b 
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of property. Many conflict problems arose out of those and are the economic and social 

demands; on the one hand, the unavoidable new change in the structure of land ownership, 

and on the other hand, the compensation for the damage caused to private property by the 

previous regime. The access grazing to the large areas of rangelands is generally held 

collectively. This does not mean that access is uncontrolled, only that rangeland use is regulated 

at the level of a collective rather than at the level of individual landowners. Use of the rangeland 

involves system rules obeyed by the community of users whereas non-members are excluded. 

On Socotra, there are in place traditional rules to enforce transhumant movements and rotation 

of grazing. When grazing and browse is exhausted in one area, tradition demands access to the 

rangeland of other communities. At such times, group leaders negotiate rights for their 

members to use the pastures of another group, on the understanding that the agreement will 

work in reverse when conditions demand. 

The danger of such agreements is that in a widespread drought, all pasture will be grazed out. 

Socotra pastoralists move their animals between the upland and lowland grazing according to 

season, weather, available food, browse and water.  

Changes in rangeland management practices  

 Preventing grazing practices after rains ("Nabituh" or "Qabiuh" practices) allowing the grass 

and plants to recommence is almost neglected.  

 A decreasing number of sheep with slightly increase in the number of the goats has been 

noticed (this probably will create more pressure on the goats grazing areas).  

 Fencing and grazing practices (i.e. “Alzaraib”), which prevent enclosed pasture in the 

mountainous areas, was declined or rather abandoned.  

 Sheep and goats nowadays are left to roam freely, instead of herded to an overnight 

compound.  
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Chapter 3: Data used and data pre-processing 

3.1 Data collection 

Different methods and data collection techniques were used in this study to collect quantitative 

and qualitative data from both primary and secondary sources. A series of high spatial 

resolution satellite data from 1972 to 2010 including Landsat products Multi Multispectral 

Scanner (MSS), Thematic Mapper (TM), Enhanced Thematic Mapper Plus (ETM+), a finer and 

highest resolution ASTER Digital Elevation Model (1 arc-second or approximately 30 m) grid are 

the main sources were accessed through the global facility of the NASA Landsat program. All 

other data used will be described in the chapter. 

We reviewed both published and unpublished maps, reports and different literatures from 

various sources to gather the secondary data. These reviews resulting in a valuable data have 

been used to support various aspects related to the study. The primary data sources were 

images from satellite data freely available through the web as well as rainfall data from 

different stations. Valuable additional information came from ground truth data and physical 

observation conducted through two prolonged visits to the island during varied weather 

seasons in transition, summer monsoon 2009 and winter monsoon 2012. 

Secondary information came from existing reports and databases as well as from focus group 

discussions and interviews at target villages.  This was aimed at capturing the diversity of 

livelihood activities, land use and grazing practicing that reflect adaptive capacity and extent of 

community vulnerability to rainfall changes and related grazing, land use and vegetation 

growth. This data collected were used to establish the perceptions of rainfall fluctuations 

changes and its influence on greenness of the island, livestock, existing adaptive capacities and 

extent of vulnerability of local communities to these changes.  

Both primary and secondary data were collected in order to address the objectives of this study 

(Fig. 9). The summaries of the narrations are used in the discussion in subsequent sections. 

3.2 Rainfall data and pre-processing 

Different sources were used for the climate. We used the main and old meteorological station 

at the Mouri Airport as a reference data, then the data from Yemen Civil Aviation and 

Meteorology Authority (CAMA) along with meteorological stations in the island. We selected 

all available rainfall data for 11 recent stations (2000–2006) and the old station (Mouri) for the 

period (1972–2010) and also the gridded monthly rainfall data from the Global Rainfall 

Climatology Center (GPCC) and Intergovernmental Panel on Climate Change (IPCC). We also 

reviewed oral local knowledge, passed on through generations (Morris, 2002) for a long-term 

understanding of the Socotra climate. All available date were merged onto one file, which has 

been checked and quality controlled.  

Preparation of gridded climate maps 

Due to scarcity and discontinuity of meteorological data for the island we used 0.5◦ rainfall data 

from the gridded monthly rainfall Reanalysis v4 product (https://reanalyses.org/) of the Global 

Rainfall and Climatology Center (GPCC) (Schneider et al., 2014) to be compared with the 

available data for analysing rainfall trends in the island. To verify the accuracy of the GPCC data 

in our study area, we compared available rainfall station data from Mouri station with GPCC 
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Figure 9: Schematic overview of image processing of satellite data and subsequent analysis to create 

maps of rainfall, NDVI and vegetation to detect temporal changes and possible degradation. 

data from for the same period. Preparation of gridded rainfall maps was made by interpolation 

of these records based on longitude/latitude and the altitude of the weather stations. Use of a 

secondary variable, elevation, for modelling gridded maps was important because there is a 

strong influence of relief on the spatial patterns of climate parameters in the study area. The 

magnitude of elevation ranges from the sea level to 1500 m. The general increase in rainfall 

with elevation is well known (Foody and Atkinson, 2002). Several studies have compared 

different algorithms for deriving predictions of rainfall from point data in conjunction with 

secondary data (Hevesi et al., 1992b), (Hevesi et al., 1992a), (Gómez-Hernández et al., 2001), 

(Lloyd, 2002). These algorithms included such techniques as inverse distance weighting (IDW), 

simple kriging with locally varying means (SKlm), ordinary co-located cokriging (COK) and 

kriging with an external drift (KED). All these techniques exploit relationships between primary 
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and secondary variables by regionalizing climate data from point data and enable to increase 

the prediction accuracy essentially. In this study, all raster maps of rainfall for the study area 

were constructed using the interpolation method known as kriging with an external drift (KED). 

A brief description of the KED technique will be given in Chapter 4. 

Data obtained from the rainfall multi sources were used to attain the long-term average 

monthly and annual rainfall at each station. Therefore, we averaged these gauges data for the 

purposes of the spatial analysis and to be compared with Mouri and give an average value for 

the island. Data from Mouri were used in the analysis from 1972 to 2010, whereas data from 

all gauges were used for the period 2005 to 2010. Rainfall data were aggregated into a monthly 

format to produce a 24 month-long series and then compiled into seasonal wet period (October 

to March) to examine the differences in rainfall distribution along with the vegetation 

greenness (NDVI).  

Two types of exhaustive secondary information, elevation and distance to the regional rainfall 

maximum, were used for rainfall interpolation. The elevation was extracted from a DEM with a 

grid size of 10 m. The distance was computed as the linear distance from the location of the 

regional rainfall maximum to each respective gauge. Then the location of the regional rainfall 

maximum was selected as the gauge with total rainfall over each of the aggregation periods. 

Finally, we used the same grid cells depicted in the DEM to determine distance from the 

regional rainfall maximum. 

Interpolation Methods 

After quality control these data were suitable for input into a computer interpolation and 

mapping technique. The geostatistical analysis extension module of ArcGIS 10.2 

(http//www.esri.com/software/arcgis/arcgis-for-desktop) was used. A brief description of the 

rainfall interpolation methods used to estimate rainfall depth at unsampled locations will be 

subsequently described. These include spatial correlation, different regression types, Thiessen 

polygon, Kriging, IDW, linear regression, OK, and SKlm. More detailed descriptions of these 

methods, can be founded in (Goovaerts, 1997, Goovaerts, 2011). Finally, a total of 12 rainfall 

point data were spatially analyzed to generate rainfall spatial variability maps. 

3.3 Satellite data 

A crucial decision the analyst must make when undertaking change analysis using multispectral 

satellite images is image selection. Over the almost 40-year life span, approximately, 73 images 

were selected for analysis and detecting the vegetation change for Socotra. We followed 

several steps in choosing the images to analyze. Firstly, since our interest is in changing of the 

vegetation cover, so we have considered the temporal frequency of human activities on 

vegetation cover. Trees cutting, overgrazing, development in the area and preservation 

activities have to be spectrally identified. Development and preservation activities might begin 

at a particular time point and then will most likely remain throughout the Landsat time series. 

Overgrazing and trees cutting in this region, however, will result in an initial pattern of 

disturbance might be followed by regrowth and possible cutting again from time to time 

throughout the 40 years. (Schweik and Green, 1999) consider, given that the Landsat system 

has been operational for more than 40 years, that maximizing the temporal extent of the image 

time series can more appropriately sample the overgrazing and trees cutting activity. In this 
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regards approximately 15 Landsat MSS, 30 Landsat TM and 28 Landsat ETM images during the 

growing season were selected from the archives (http//eros.usgs.gov/doi-remote-sensing-

activities/2015/Home) for the period 1972 to late 2010). Second, we considered the impact of 

seasonal effects on spectral response. We selected the late summer and early winter as an 

appropriate scene for the study of vegetation resources when trees and canopies are fully 

green. Moreover, the gaps where cutting or overgrazing exposes some bare soil is more 

apparent when a tree canopy is in full leaf (Miller et al., 1996) cover than in fall or spring scenes. 

There is also a contrast between herbaceous growth and forests in late summer when dry 

conditions promote herbaceous senescence. For these reasons, we selected only images 

acquired between October and March. We also insured that the images were selected as nearly 

time as possible with the season and time of year coincident with the favorable atmosphere 

and high biomass in order to minimize the influence of sun’s synchronous orbit and diurnal 

variability in the satellite images. Third, we considered the year to year climatic variability in 

the images. Despite the irregular rainfall and the dense presence of clouds, it became apparent 

that our selected images were dramatically aligned with the rainfall in the area under the 

hypothesis that the difference might have happened due to a higher than normal rainfall during 

other year. It is important, then, to select images that have had similar rainfall and temperature 

patterns during the months or even the year prior to image acquisition. Finally, the cost drives 

image selection. For this study, we used the free online geo-registered time series of Landsat 

MSS, TM and ETM+ images made available at no cost through EROS DATA CENTER-USGS, 

through the website. 

Satellite imagery review 

Remote sensing imagery, including the Landsat products Multi Multispectral Scanner (MSS), 

Thematic Mapper (TM), Enhanced Thematic Mapper Plus (ETM+), and Operational Land Imager 

(OLI), have ideal sampling characteristics for monitoring diverse land cover and vegetation 

types at a regional in historic level (Cohen and Goward, 2004, Cohen et al., 2010, Miller and 

Rogan, 2007). The 30 m spatial resolution of Landsat sensors allows for spatial detail to be 

captured at a scale appropriate for monitoring vegetation structure and composition (Willis, 

2015). General changes in land cover classes are also detectable through Landsat, such as 

conversion between water resources and agricultural land (http//eros.usgs.gov/doi-remote-

sensing-activities/2015/Home, Urban, Marcel et al 2014 and Hese 2012). The two sensors of 

Landsat Data Continuity Mission (LDCM/Landsat 8), the OLI sensor and the Thermal Infra-Red 

Sensor (TIRS), well known provide seasonal coverage of the global landmass at a spatial 

resolution of 30 meters (visible, NIR, MidIR); 100 meters (thermal); and 15 meters 

(panchromatic) to be used for current monitoring purposes since its launch in February 11, 

2013. Change detection of ecosystems became repeatedly monitored by Landsat imagery. 

Associated methods are rapidly evolving due to free access to data, increased automated 

algorithms, and detailed information becoming available over large geographical swaths 

(Cohen et al., 2010). 

Many techniques have been proposed for change detection in medium resolution radar or 

multispectral data. However, the availability of very high resolution data (even formally under 

1m) acquired by many space borne sensors such as QuickBird in the US Fish and Wildlife Service 

Desert National Wildlife Refuge, Earth Observing Mission 1 (EO-1), IKONOS/Geoeye, Advanced 
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Land Observing Satellite (ALOS), Advanced Space borne Thermal Emission and Reflection 

Radiometer (ASTER) and Advanced Land Imager (ALI) (Wiens et al., 2009) resulted in a new set 

of possible applications, by a high geometrical precision. Nevertheless, this increase in the 

resolution induces new constraints that are more complex to mitigate the new born 

geometrical considerations and radiometrical considerations.  

We have chosen Landsat which provide a high resolution and an adequate range of spectral 

bands. It is highly acquired in most of natural resource studies since many other sensors do not 

offer freely available data. Table 4 shows different satellite sensors ensuring varying scales of 

vegetation that can be studied. Landsat is useful for vegetation communities, whereas SPOT or 

QuickBird may be used for species or specific vegetation change monitoring. Or high resolution 

aerial imagery along with QuickBird can be used to monitor changes in sensitive ecosystems 

such as aquatic habitat (http//eros.usgs.gov/doi-remote-sensing-activities/2015/Home). 

Data acquisition 

Several optical space borne sensors with different temporal and spatial resolutions allow 

regular monitoring of the different temporal properties of ecosystem dynamics as they provide 

multi-temporal measurements of the land surface. In this context, sensors that provide data on 

an inter-seasonal time scale are particularly useful as they can be used to monitor the seasonal 

temporal trajectory driven by plant phenologies sometimes. These sensors are varied based on 

their temporal and spatial characteristics for describing the ecosystem phenomenon. 

The entire image base of Landsat imagery has recently been released to the public, and this 

family of satellites would seem to hold promise for long-term low cost studies of vegetation 

cover. Images were accessed through the global facility of the NASA Landsat program 

(http//landsat.usgs.gov/ and http//glovis.usgs.gov/). It was not possible to obtain Landsat 

images of the study area for the similar time of each decade because of cloud cover (see e.g. 

Figure 10) and the limited availability of the images release by NASA. The choice of Landsat 

sensors was made because of the need for either a sufficient spatial resolution allowing to 

distinguish the main different vegetation species in the study area and to have a sufficiently 

long image time series.  

   

  

Figure 10: Examples for cloud cover of Socotra Island though the last 40 years (see Appendix 1) 

 

16. Dec 1972 05. Dec 1988 

05. Nov 2006 14. Dec 1994 
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A series of this high spatial resolution satellite data from 1972 to 2010 was acquired (Table 5), all referring to the late winter/early spring 
period and thus relating to the seasonal peak of vegetation development period in the area under study. 
 

 

Table 4. Example of a 2014 cost-benefit analysis for choosing appropriate satellite imagery (after (Willis, 2015). 

 
Satellite Background 

information 
Spatial resolution Nominal 

revisit time 
2014 Base cost for 
images (per km2) 

2014 Base cost for 
images (per km2) 

Spectral resolution Applications 

MODIS NASA product on 
Terra and Aqua 
satellite, launched 
1999 

250 m (bands 1–2), 
500 m (bands 3–7), 
1000 m (bands 8–36) 

1–2 days Free n/a 36 Bands available at 
different resolutions 

Phenology 

Landsat 
TM/ETM+/OLI 

NASA product since 
1972 

30 m 16 days Free n/a 7 Bands on Landsat 5, 
8 bands on Landsat 7 

Land use/land cover 
change 

IKONOS First high resolution 
color imaging satellite 
since 1999, owned by 
DigitalGlobe 

0.80 m pana, 2.4 m 
multib 

3–5 days $10 (minimum order 
25 km2) 

$20 (minimum 
order 100 km2) 

Pana, multib(4-band), 
natural color (3-band), 
color IRc (4-band) pan-
sharpened, or 
pana + multib 

Data validation 

GeoEye-1 Highest resolution 
commercial color 
imagery satellite since 
2008, owned by 
DigitalGlobe 

0.46 m pana, 1.84 m 
multib 

<3 days $13–29 (minimum 
order 272 km2) 

$22–38 (minimum 
order 100 km2) 

Pana or multib (4-or 8-
band) 

Data validation 

Quickbird Owned by 
DigitalGlobe, 
launched 2001 

0.61 m pana, 2.4 m 
multib 

1–3.5 days $13–29 (minimum 
order 272 km2) 

$22–38 (minimum 
order 100 km2) 

Pana or multib (4-or 8-
band) 

Data validation 

SPOT 1-7 Launched in 1986, 
owned by Spot Image, 
France 

2014 1.5 m pana, 6 m 
multib; 2002–2014 
2.5–5 m pana, 10 m 
multib1986–2002 
10 m pana, 20 m 
multib 

1–3 days $32 (minimum order 
60 km2) 

$24–72 (minimum 
order $3600) 

Pana or multib (4-
band) 

Data validation 

ASTER NASA product on 
Terra satellite, 
launched 1999 

15 m visible near IRc, 
30 m shortwave IRc, 
90 m thermal IRc 

16 days $1.50/imagery$0.75/DE
Md 

n/a 15 bands Supplementary data 
source, DEMd 

A Pan – panchromatic includes one greyscale band of combined red, green, and blue of visible electromagnetic spectrum. 

B Multi – multispectral covers multiple bands along the electromagnetic spectrum. 

C IR – Infrared. 

D DEM – Digital Elevation Model. 

http://www.sciencedirect.com/science/article/pii/S0006320714004790#tblfn1
http://www.sciencedirect.com/science/article/pii/S0006320714004790#tblfn2
http://www.sciencedirect.com/science/article/pii/S0006320714004790#tblfn1
http://www.sciencedirect.com/science/article/pii/S0006320714004790#tblfn2
http://www.sciencedirect.com/science/article/pii/S0006320714004790#tblfn3
http://www.sciencedirect.com/science/article/pii/S0006320714004790#tblfn1
http://www.sciencedirect.com/science/article/pii/S0006320714004790#tblfn2
http://www.sciencedirect.com/science/article/pii/S0006320714004790#tblfn1
http://www.sciencedirect.com/science/article/pii/S0006320714004790#tblfn2
http://www.sciencedirect.com/science/article/pii/S0006320714004790#tblfn1
http://www.sciencedirect.com/science/article/pii/S0006320714004790#tblfn2
http://www.sciencedirect.com/science/article/pii/S0006320714004790#tblfn1
http://www.sciencedirect.com/science/article/pii/S0006320714004790#tblfn2
http://www.sciencedirect.com/science/article/pii/S0006320714004790#tblfn1
http://www.sciencedirect.com/science/article/pii/S0006320714004790#tblfn2
http://www.sciencedirect.com/science/article/pii/S0006320714004790#tblfn1
http://www.sciencedirect.com/science/article/pii/S0006320714004790#tblfn2
http://www.sciencedirect.com/science/article/pii/S0006320714004790#tblfn1
http://www.sciencedirect.com/science/article/pii/S0006320714004790#tblfn2
http://www.sciencedirect.com/science/article/pii/S0006320714004790#tblfn1
http://www.sciencedirect.com/science/article/pii/S0006320714004790#tblfn2
http://www.sciencedirect.com/science/article/pii/S0006320714004790#tblfn1
http://www.sciencedirect.com/science/article/pii/S0006320714004790#tblfn2
http://www.sciencedirect.com/science/article/pii/S0006320714004790#tblfn3
http://www.sciencedirect.com/science/article/pii/S0006320714004790#tblfn3
http://www.sciencedirect.com/science/article/pii/S0006320714004790#tblfn3
http://www.sciencedirect.com/science/article/pii/S0006320714004790#tblfn4
http://www.sciencedirect.com/science/article/pii/S0006320714004790#tblfn4
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Among available scenes in the USGS data archive only few datasets had relatively low cloud 

contamination for the selected study area, i.e. the Landsat 4 (MSS) for 1972-1973, the Landsat 

5 (TM) for 1985-1986 and 2 (TM) for 1994-1995 and finally 7 Landsat (ETM+) scenes with the 

1T level of pre-processing for 2009-2010 (Table 5&6). These data sets are located on the 

satellite path 171 and row 51 for the Landsat 1-4 and the path 159 and row 51 for the Landsat 

5 and 7. The satellite images were acquired during early October until late March of the 

consecutive year, respectively. It is generally a dry season in Socotra between June and 

September and therefore no significant spectral differences in the images are expected due to 

seasonal differences. 

Satellite Sensor Band No. Spectral Range Scene Size Pixel Res. 

Landsat MSS MSS multi-spectral 1,2,3,4 0.5 - 1.1 µm 

A
p

p
r.

 
1

7
0

 X
 1

8
5

 k
m

 

60 meter 
Landsat TM5 TM multi-spectral 1,2,3,4,5,7 0.45 - 2.35 µm 30 meter 

TM thermal 6 10.40 - 12.50 
µm 

120* 
meter 

Landsat7 
ETM+ 

ETM+ multispectral 1,2,3,4,5,7 0.450 - 2.35 µm 30 meter 
ETM+ thermal 6.1, 6.2 10.40 - 12.50 

µm 
60* meter 

Panchromatic 8 0.52 - 0.90 µm 15 meter 
Landsat 8 

(OLI) 
Multispectral 
Panchromatic 

Thermal 

1,2,3,4,5,6,7,9 
8 

10,11 

0.43 – 1.38 
0.50 – 0.68 

10.60 – 12.51 

 30 meter 
15 meter 

100* 

Table 5: Spectral characteristics and spatial resolution of the image data used. 

Data type Path Row Acquisition date Cloud Percent (%) Spatial resolution 

Landsat MSS 171 51 1972 10 05 5% 79 m 
171 51 1972 12 16 18% 79 m 
171 51 1972 11 10 5% 79 m 
171 51 1973 01 03 30% 79 m 
171 51 1973 02 26 1% 79 m 

Landsat TM 
4 & 5 

159 51 1984 12 02 20% 30 m 
159 51 1985 01 19 25% 30 m 
159 51 1985 03 08 3% 30 m 
159 51 1994-10-11 10% 30 m 
159 51 1994-11-28 40% 30 m 
159 51 1995-01-15 5% 120* m 
159 51 1995-02-16 7% 30 m 
159 51 1995-03-04 2%  

Landsat 7 ETM+ 159 51 2005-10-01 1.5% 30 m 
159 51 2005-11-02 1% 30 m 
159 51 2005-11-18 10% 30 m 
159 51 2005-12-20 5% 30 m 
159 51 2006-03-10 5% 30 m 
159 51 2006-03-26 0% 30 m 
159 51 2009-10-12 10% 30 m 
159 51 2009-10-28 2% 30 m 
159 51 2010-03-21 2% 30 m 

Table 6. Scheduled images used for the study area. (*) Bands are acquired at this resolution, but 

products are resampled to 30 meter pixels. 
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3.4 Data pre-processing  

Pre-processing of satellite images prior to image classification and change detection is essential. 

First of all, we tried to eliminate or to reduce the errors of satellite images. However, this stage 

required a long sequence of time-consuming procedures and the use of numerous techniques. 

It takes into account measurable reflectance of the atmosphere, aerosol scattering and 

absorption and the earth’s surface to avoid the volatility of the atmosphere, which might 

introduce variation between the reflectance values or digital numbers (DN’s) of satellite images 

acquired at different times. However, image pre-processing is necessary to correct any 

distortion inherent in the images due to the characteristics of imaging system or sensor 

conditions. It commonly comprises a series of operations, including atmospheric correction or 

normalization, image registration, geometric correction, radiometric correction and masking 

(e.g., for clouds, water, irrelevant features). When pre-processing is completed, then images 

can be enhanced to improve their visual appearance of the objects on the image and help in 

extracting useful information that assists image interpretation. Commonly used image 

enhancement techniques include image reduction, image magnification, transect extraction, 

contrast adjustments, band ratioing, spatial filtering, Fourier transformations, texture 

transformation and statistical numerical methods (e.g. regression variable substitution, 

arithmetic combination, mathematical convolution operation, high-pass filtering, principal 

component analysis, canonical variable substitution, wavelets transforms and component 

substitution), fuzzy logic and multivariate statistical analysis. Images from different Landsat 

sensors containing distinctive features in reflecting vegetation cover and land surfaces were 

used in our study (Fig. 11). During image-to-image registration, nearest neighbour resampling 

algorithm was used to resample the images in order to avoid the change of digital numbers and 

also to maintain the same pixel size of 30 m by 30 m for all images. Sun angle and elevation as 

well as the gain and offset for each band were obtained from the image data file. Geometrically 

corrections and atmospherically calibrations and many several subsequent processes were 

used to develop clear textural images for vegetation indices and farther image classification 

analysis. Many of those processes will be described later. 

The data processing was carried out using the following software packages: Erdas Imagine 

2014, Geomatica 5, ENVI 5, ArcMap 10.1, Geospatial Modelling Environment and PANCROM 

ver. 5.97.56. All images were resampled to 30 m pixel size for all bands using the nearest 

neighbor method. Subsequently, they have been geo-referenced and projected to the Universal 

Transverse Mercator (UTM) coordinate system, Datum WGS 1984, zone 40 North. To ensure 

that time series images are directly comparable to one another, the relatively cloud free 2004-

26-05 Landsat TM was selected as a reference image for the geo-reference. The images were 

subsequently clipped to the final study area then radiometric enhancement was applied. This 

step takes into account a set of techniques that are applied including corrections related to the 

sensitivity of the sensors, sun angle and earth surface as well as the atmospheric scattering and 

absorption. Thus however, involves haze and noise reduction, destripe data, histogram 

matching and topographic normalization. Furthermore, geometric rectification was achieved 

using polynomial model based on 100,000 scale British topographic maps and twenty ground 

control points (GCPs). Finally, images were corrected to remove the effects of atmospheric 

scattering (Teillet and Fedosejevs, 1995, Richter and Schläpfer, 2016). We also performed 
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additional georeferencing verification by overlaying a very accurate GPS new recorded roads 

network over each image and visually confirmed the georeferencing of each image.   

Other ancillary data, such as topography information, soils data, census tract, roads and 

networks, statistics and meteorological records, were also combined with remotely sensed 

data to improve classification performance (Jupp et al., 1994, Congalton and Green, 2008, 

Belgiu and Drăguţ, 2016, Gao et al., 2016). Consequently, thematic vector layers provided by 

the local UNOPS/EPA Office (e.g. fishing villages, geology layer, land cover map etc.) were also 

incorporated in the rule based pre-processing. As discussed before, GIS techniques then will 

play an important role in the effective use of ancillary data in improving vegetation cover 

classification performance. For data compatibility and avoiding data conflict analyses, all the 

data were standardized and resampled to 30 m of resolution. 

 

  
Figure 11: Three different Landsat images left side before and right side after pre-processing.  

3.4.1 Geometric corrections  

Although the new generation of sensors show improved data acquisition and image quality, 

some inherent distortions affecting the signal coming from the Earth surface and collected by 

satellites still remain and require correction before performing reliable analysis. Typical 

corrections include geometric and radiometric distortions (Toutin, 2004). Image geometric 

characteristics are set by the orbit, spacecraft attitude (roll, pitch, yaw), scanner properties and 

earth rotation and shape. 

As a first step, 20 GCPs were used to georeference and register the entire Landsat data sets to 

the Universal Transverse Mercator (UTM) projection System (zone number 40N; reference 

datum WGS84). The first order polynomial transformation model which is also known as 

quadratic polynomials and nearest neighbour method for resampling were used for 



26 
 

rectification of the images. The Root Mean Square (RMS) of GCPs in x and y directions for TM 

and ETM scenes was 0.32 and 0.270 pixels, and 0.51 pixels for MSS respectively which is less 

than one pixel (30m). All these GPS data were taken among the island using the asphalt road 

junctions, and the natural distinct as land-shapes, seacoast, buildings and wadis.  

3.4.2 Noise and de-striping in image data 

Inherent noise in the images is still present in any downloadable data set and, therefore, these 

images need to be smoothed before being used for NDVI time series. Such noise is mainly due 

to remnant cloud cover, snow, water, or shadow. Such sources of errors tend to decrease the 

NDVI values. Unfortunately, it was hardly to obtain Landsat images of the study area for the 

exact time of each decade because of the cloud cover density. Furthermore, a malfunctioning 

of Scan Line Corrector-off acquisition mode in the Landsat TM system from May 31st of 2003 

(see http//landsat.usgs.gov/slc_off.html, for references) created more difficulty in which we 

got to deal more synchronously though the cloudy satellite data.  

3.4.3 Atmospheric correction 

Topographic effects are well known problems that influence spectral reflectance and temporal 

data used for monitoring vegetation changes and land cover classification in the mountainous 

and steep terrain. It is critically influenced by the shadow due to the sun position and might 

cause variations in surface reflectance values for the same cover (Richter et al., 2009, Richter 

and Schläpfer, 2011). Therefore, in correcting surface reflectance, it is essential to remove the 

effects of the attenuation from highly variable aerosols, different sun illumination conditions 

due to topographic effects, scattering by the atmosphere and to put multitemporal data on the 

same radiometric scale, (Li et al., 2016c). Relatively considerable effort has been expended on 

quantitative atmospheric correction of remotely sensed imagery and different techniques have 

been developed. These efforts dealt with invariant-object, histogram matching, dark object, 

and contrast reduction. (Kaufman and Tanre, 1992, Carlson and Ripley, 1997, Miura et al., 1998, 

Teillet and Fedosejevs, 1995, Gao et al., 2009, Franch et al., 2013, Fuyi et al., 2013, Richter, 

1996, Song et al., 2001, Potter, 1984), (Lee et al., 2016, Mao et al., 2016, Okin and Gu, 2015). 

Huang et al. (2009b) categorized those techniques into two categories: theoretical approaches 

using an atmospheric model and empirical approaches with ground data, whereas (Balthazar 

et al., 2012) categorised them into three groups based on their degree of complexity and data 

required (i.e. simple empirical methods, such as band ratioing, semi-empirical approaches, such 

as the Cosine correction and  the physically based approaches), while (Thompson et al., 2016) 

used Bayesian inference for the atmospheric correction. 

While seriously efforts have been devoted to refine the topographic correction methods, 

however, still according to many authors there is no generally and standard accepted 

universally applicable model. Consequently, ATCOR3 semi-empirical algorithm atmospheric 

correction developed by Dr. Rudolf Richter from the DLR institute is reported as a well 

performance procedure over a wide-ranging of satellite sensors in diverse terrains. It has been 

widely used for eliminating topographic and atmospheric content from the images data as well 

as correcting the radiometric variability might cause by haze and been implemented in many 
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GIS software such as ERDAS Imagine and PCI Geomatics (Richter et al., 2009, Hantson and 

Chuvieco, 2011, Balthazar et al., 2012) 

In this study atmospheric correction and haze normalization were performed individually per 

each image using same procedure described in semi empirical ATCOR3 algorithm procedure 

developed by Richter et al., (2009) and (Richter and Schläpfer, 2014). However, it is an 

algorithm that computes the ground reflectance for each pixel in each spectral band. Despite 

the broad range of ATCOR3’s database which consists of standard values for different pressure 

altitude, air temperature, visibility, humidity, ground elevations, solar zenith angles as well as 

solar azimuth and acquisition date/time, nevertheless some of these parameters such as solar 

zenith need to be adjusted. A new calibrated file (*.cal) was created for each image with 

modified c0 and c1 values based on gain and bias values calculated using max and min radiance 

for each spectral band obtained from the imagery metadata. These files were then used to 

calibrate the radiance in the based ATCOR approach (after Richter et al., 2009): 

 0 1L c c DN     Units ( 2mW / cm sr m ), 

where 0c  and 1c  are the radiometric calibration coefficients (offset and slope) to convert the 

digital number (DN) into corresponding at sensor radiance L. 
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 
,   then 0c  = 0.1*Bias and    1c = 0.1*Gain  for the unit conversion. 

For the other parameters, we tried out various atmospheric conditions until attaining 

satisfactory results. Thus rural worked quite well as an aerosol type as well as the 

midlate_winter_rural for the humidity. Solar zenith was calculated as; 

Solar zenith = 90 degrees - solar_elevation (in degrees). 

However, for the Empirical Bidirectional Reflectance Distribution Function (BRDF) we followed 

the recommended rules for the incident angle in mountainous terrain (see (Richter et al., 2009, 

Richter and Schläpfer, 2011),(Balthazar et al., 2012) and Richter et al., 2009). An approximation 

of the BRDF threshold angle of t  was estimated as; 

20 45o o
t s sif     

15 45 55o o o
t s sif     

10 55o o
t s sif    , where s  is solar zenith angle, g is the lower boundary 

threshold. 

Factor g is a lower bound to prevent a too strong reduction. It’s value is varied between 0.1 and 

1.0 by increment of 0.1 Vincent Balthazar et al 2012), the default value is 0.25 (Richter and 

Schläpfer 2011). The high value of g leads to a rise of bright pixels in the shaded areas while 

choosing a low value lets dark pixels remaining in low illuminated zones. Therefore, the user is 

https://www.researchgate.net/profile/Vincent_Balthazar
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highly encouraged by several authors to use trial and error in order to obtain adequate results 

for his specific dataset. 

Finally, low pass filter for adjacent correction and linear contrast stretch were applied to each 

image to ensure adequate contrast. 

3.4.4 Multi Date Cloud Masking and Gap Filling 

Clouds and their shadows are a compounded problem inherent with Landsat satellite imagery. 

However, considerable research efforts have been devoted and several threads of discussion 

on eliminating its effects and therefore, various techniques have been developed to remove 

cloudy pixels (Helmer and Ruefenacht, 2005, Ackerman et al., 1998, Lin et al., 2013, Song and 

Civco, 2002, Martinuzzi et al., 2007). We followed both techniques from (Song and Civco, 2002) 

and (Martinuzzi et al., 2007) which are simple and straightforward to create masks for 

identifying clouds and cloud shadows by the use of the benefit of both the clouds highly 

reflective in the short wavelength band 1 and the cold in band 6, meaning they will appear 

darker in the thermal band.  Different ERDAS model maker algorithms were designed to discern 

the remains semi-transparent clouds at the cloud edges and such as Cirrus cloud and their 

projected shadows. We also used the brightness value in Landsat band 4 (near infrared) to 

verify detection of cloud shadows.  

The gap-filling techniques have emerged to mend the masked images and the stripe lines in 

Landsat 7 due to the significant data loss in each SLC-off scene with the use of the multi-date 

image compositing techniques. A combined data from two images which have had similar 

rainfall and temperature patterns during the same month or even a similar month in the year 

prior or subsequent to image acquisition, was used, under the assumption that the land covers 

changed insignificantly over a short period of time (Lin et al., 2013). Some other effects such as 

radiance and color shade due to lighting and atmospheric effects were also somewhat 

corrected by ERDAS and PANCROMA. 

Six-band algorithm in the PANCROMA was used based on the method of (Martinuzzi et al., 

2007). Each band of the reference and adjust image was subset into actual extent for effectively 

eliminating the area beyond the extent of the study area. For the gap filling procedure to 

perform correctly, the software demands that each pair of matching bands from the two 

images have identical corner coordinates and row and column sizes. Each of the red, blue, 

green, and NIR pairs was resized to same numbers of columns and rows, respectively. This 

method considers both the pixel values in the adjust image and the reference image, and then 

estimates appropriate new values based on an interpolation of the raster’s cells. So gaps were 

filled in each image individually by selecting matching bands from the reference and adjust 

images and running the algorithm. Cloud altitude, sun azimuth, and sun elevation were used to 

calculate the expected clouds and cloud shadows. However, the digital number (DNs) 

thresholds of the cloud areas were manually determined by inspecting the band 1 and the band 

6 and interrogating it using the cursor. The algorithm selected all pixels with DNs below the 

band 1 user-defined threshold and above the band 6 threshold and classified each pixel as 

either cloud or non-cloud. The cloud pixels were set equal to zero and the non-cloud pixels are 

left alone. The result is a band file with the cloud areas blacked out. The Noise (Dust & 

Scratches) filters were subsequently used to eliminate the remaining ETM+ scratches. 
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The result was an image with clouds masked and gaps filled in the adjusted image as shown in 

Fig. 12.  

     

Figure 12: Illumination of clouds with clouds shadows and SLC-off image gaps (Scholte et al.) and 

adjusted image (right). (Full images see appendix 2) 

3.4.5 Topographic data and DEM 

A new freely available global digital elevation model data set derived from ASTER GDEM 

satellite system METI/NASA (http//gdex.cr.usgs.gov/gdex/) which is characterized by a finer 

and highest resolution (1 arc-second or approximately 30 m) grid (Balthazar et al., 2012) and  

best available coverage to date (Hirt et al., 2010) was used in this study. The terrain model was 

indispensable for pre-processing of satellite data and the supplementary statistical analysis in 

the main part of the study. Therefore, a topographic normalization of NDVI scenes was carried 

out to remove these effects. Second, by analyzing spatial relationships between vegetation 

patterns, climatic factors and relief, the terrain model played an important role appearing in 

regression equations as an independent constant. 

The topographic maps were useful for geometrical correction and rectification of the satellite 

data, especially that of fine resolution. The vegetation maps were used for identification of 

areas covered by various vegetation types and validation of the results of modelling land cover 

change. 

3.5 Socio-economic data 

The population of Socotra is a mixture of many different ethnic groups and developed its own 

culture and tradition, such as the spoken language, which is distinct from that of the mainland 

Yemen. They also developed a unique environmental conscience, which is heavily threatened 

by the pressures of the modern way of life. Socotrani people were originated on the island with 

its peculiar pastoral culture. They live in tribes (called "bedu") leaded by Sheikhs and have 

common land ownership so far (Habrová, 2004). In actual fact they know virtually the name of 

all species for local trees and shrubs and are able to differentiate them by their local Socotran 

language.  

3.6 Maps and Field data  

Two types of topographic and thematic maps were used in our research work. We used. 

 Analogue maps of topography (scale 1,100,000) from 1982 

 An analogue vegetation map (scale 1,500,000) from 1995 covering the whole study 

region  

 A digital map of land cover derived from Landsat 7 ETM image (Path/Row 159/051) 

acquired on 29 April 2001 by (KRÁL, K. & PAVLIŠ, J. 2006). 

 A Digital Elevation Model (DEM) derived from ASTER GDEM satellite system METI/NASA 

(1 arc-second or approximately 30m grid). 
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 Thematic vector layers provided by the local SCDP/EPA office (e.g., geology map, 

vegetation type maps, location of villages, etc.) were incorporated in the rule-based 

post-classification sorting (Knowledge Base classification). 

 A set of 20 Ground Control Points (GCPs) acquired by GPS during the ground truth was 

used for geometric corrections. More than 450 reference points located by GPS were 

gathered during the field investigation in November 2009. 

 Numerous relevant data and figures from SCDP/EPA such as local vegetation database, 

locally collected GPS data by Bucek and Pavlis in 2002; Pavlis and Habrova 2005; Dr. 

Miller and Dr. Dana Pietsch, during their field survey between 1999 and 2008, were used 

mainly as a training data for mapping of altitudinal vegetation zones and partly for land-

cover mapping. 

 A set of 250 GPS digital photographs were also taken during the fieldwork 2009 to be 

used for similar purposes especially in areas with lack of other terrain data. 

 More than 600 of field data points have been collected during the fieldwork during April 

2012 in order to be used for further analysis, validation and modelling of satellite data. 

The main dataset contains surveys of vegetation distribution (dominant species) and 

soil types. Contemporary land use (land use type, crops composition/change etc.) have 

been checked directly in the field. Data for historical dynamics of land use have been 

derived by interviews with farmers or from statistical reports of local authorities. In 

order to estimate density of vegetation cover, photos of vegetation cover have been 

made at every test site (100 m*100 m). Common indicators for degradation processes 

have been noted and evaluated where any degradation of vegetation cover was 

observed. 
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Chapter 4: Methodology of data analysis 

In this chapter, we briefly describe the main processes and various techniques or rules from 

which we used specific methods to interoperate our data and highlight the major steps. 

4.1. Variability of vegetation distribution and change in space and time                                                               

An analysis of spatial and temporal variability in vegetation cover was based on the use of 

elementary methods and variables of descriptive statistics. These methods, described in every 

statistical textbook, have been widely used as extensions in different GIS and remote sensing 

software. Here we still have to briefly mention them: Linear time-trends were calculated by 

regressing a variable (for example, NDVI or Rainfall) as a function of time over the study 

period, using least-squares estimation. The time-trend calculations included determination of 

both the regression slope coefficient and increase or decrease of the variable during the study 

period. The time-trends were determined for area-averaged classes of all variables and, in 

order to exhibit spatial trends for each grid cell. 

4.2. Methods of geostatistical analysis  

4.2.1. Autocorrelation 

Autocorrelation is one of the main tools in geostatistical analysis. It involves correlating a timely 

sequence of data with itself, statistically known as random process between values at different 

times (Majid et al., 2016). In other words, the two sets of values to be correlated are achieved 

by pairing each value Xt with Xt+r  , where t gives the time or position in the space and r is an 

integer value of displacement known as the lag. The correlation coefficient between the 

samples and a displaced copy of itself is known as the autocorrelation coefficient, rr. It can be 

calculated at successive lags and the resulting series of rr values revealing useful information 

on the structure of the data (Propastin, 2007). These are plotted on an rr versus t graph called 

an autocorrelogram (Swan and Sandilands, 1995, Griffith, 2013). Where t is zero, pairs of X 

values are identical and the coefficient of autocorrelation clearly equals 1. As t increases, the 

similarity between the pairs of values is likely to decrease. At a certain value of t, we reach a 

point at which the rr ceases to decrease this is the range value. Points with distance exceeds 

the range value are independent (Wang, Haicheng, Qiuming Cheng, 2015). 

4.2.2. Spatial autocorrelation 

Spatial autocorrelation actually measures the similarity between samples for a given variable 

as a function of spatial distance (Sokal & Oden, 1978a,b; Griffith, 1987; Legendre, 1993; Rossi 

& Quénéhervé, 1998, cited in: (Diniz‐Filho et al., 2016). The spatial autocorrelogram describes 

the degree and form of spatial dependence, which is the similarity between values separated 

by a given distance. Positive autocorrelation means that geographically nearby variables values 

tend to be alike on a map (Plutzar et al., 2016). In contrast, with negative spatial autocorrelation 

geographically nearby values of a variable tend to be dissimilar on a map. Most ecological data 

tend to be moderately positive spatially auto-correlated because of the way phenomena are 

geographically organized (Griffith and Chun, 2014). The coefficient of autocorrelation can be 

calculated on different ways. Moran’s I coefficient is one of the most commonly used 

coefficient in univariate autocorrelation analysis and is given as;  
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where n is the number of samples, S0 is the sum of the ijw s, iX  and jX  are the data values in 

quadrants i and j, X is the average of X and ijw  is an element of the spatial weights matrix W. 

Under the null hypothesis of no spatial autocorrelation, I has an expected value near zero, the 

positive and negative values, indicating positive and negative autocorrelation, respectively. 

When this positive autocorrelation occurs, it means that Moran’s I is close +1 and this means 

the values are clustered together. 

4.2.3. Kriging with an external drift 

Kriging with an external drift (KED) is a geostatistical method used for predicting values and 

regionalization of point data in space and incorporates the local trend within the 

neighborhoods. It takes into account one or more external influences on data distribution (Liu 

et al., 2016). Generally, KED is used for deriving prediction of point data in conjunction with 

secondary data. A benefit of using KED for regionalization of climate data is the possibility of 

incorporation of relief and topography variables into a kriging system as external drift function. 

For further details see (Wackernagel, 1998). The KED predictions are a function of (1) the form 

of the variogram model, (2) the neighboring primary data (rainfall data), and (3) the modelled 

relationship between the primary variable and the secondary variable (elevation) locally. The 

local mean of the primary variable is derived using the secondary information and ordinary 

kriging (OK) (Jin et al., 2016). The KED prediction is given by the following equation 
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where y and x are the secondary (i.e. elevation) data. 

In practice, kriging with an external drift was performed as follows: (i) deriving the underlying 

(trend-free) predictions for primary data by ordinary kriging; (ii) estimating external drift 

coefficients at all locations as well as at the nodes of the estimation grid through modelling the 

relationship between primary and secondary variable; (Xiao et al.) pertaining the obtained 

coefficients for external drift to the trend-free predictions (Pereira, Maria João, et al. 2016). 

4.2.4. Convolution Spatial Filtering 

This is a mathematical process on two functions to produce a modified version of the original 

one. In image processing is an important technique principally to identify different objects and 

their association ships to make an assessment about a phenomenon or process. This spatial 
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enhancement is a mathematical processing of image pixel data to emphasize spatial 

relationships (Raja et al., 2016). It modifies pixel values based on the Digital Numbers (DN) 

values of the surrounding pixels (Dong et al., 2014). Filtering is known as a process meant to 

enhance certain features or to remove unwanted signal or disturbance (noise) or to remove 

the effect due to sensor. Convolution explains the relationship between the input image, the 

kernel or window and the output image in linear spatial filtering. 
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,    

where; 

ijf  = the coefficient of a convolution kernel position i, j, ijd  is the data value of the pixel that 

correspond to ijf , Q is the dimension of kernel, (if q = 3, the kernel 3 x 3), F is either sum of the 

coefficient of kernel, or 1 and V is the output pixel value (Jensen 1996; Schowengerdt, 1983 

cited in: (Sahu, 2007) 

4.2.5. Correlation coefficient  

In a bivariate distribution where two variables are involved, we were interested to find out if 

any relationship exists between the variables under study. The existence of any relationship 

can be proved by calculation of correlation for the couple of variables. If the change of these 

variables is in the same direction, the correlation is said to be positive. If the variables deviate 

in the opposite direction, the correlation is negative. A measure of correlation strength reflects 

correlation the coefficient which may be given as; 
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4.2.6. Multiple correlation coefficients  

Multiple correlations are believed to represent the combined effect of several explanatory 

variables on a response variable. In this study, multiple correlations enable us to estimate the 

collective influence of environmental factors on NDVI. The used equation for the calculation of 

multiple correlation coefficients from the derived simple correlation coefficients is given as; 
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where zxyR
 

is the multiple correlation coefficient; xyr , yzr  and xzr  are simple pairwise 

correlation coefficients between variables x, y and z (e.g. NDVI, rainfall, slope, aspect and 

elevation). 

4.2.7. Simple linear regression model 

The simple linear model between y and x, mostly fitted by Ordinary Least Squares methods 

(OLS), is; 

t ty a bx    , 
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where a is the intercept, b represents the slope coefficient for independent variable x, and ԑt is 

a random error at time t. The two variables to be related in this model are the dependent 

variable y (the NDVI), and the independent variable x (such as rainfall, temperature, evapo-

transpiration etc.). We actually applied this predictable regression model to study the 

relationships between vegetation distribution and environmental parameters, on the 

hypothesis that at each point of the study area this model will definitely represent and quantify 

that relationship. 

4.2.8. Multiple linear regression model 

A multiple linear regression analysis was performed using the response variable, NDVI, and 

both of the climatic variables. For every year we fitted a multiple linear regression model 

describing the NDVI value for each pixel in its dependence from the climatic predictors. The full 

linear model equation is expressed as 

1 1 2 2y X X         ,        

where a is the intercept, 1 and 2 are the slope coefficient for the independent variables 1X  

and 2X while  is a random error. 

The model parameters were tested sequentially first, the term for rainfall 1 next, the term 2

for elevation and then the intercept α, and then these parameters were averaged when they 

were not significantly different as well as the model was refitted, using the averaged 

parameters.  

4.2.9. Quantifying relationship between variables by analyzing spatial relationship 

Statistical regressions and correlations have been the most common techniques used to 

quantify the relationship between a response variable (mostly NDVI) and explanatory variables 

in studies on monitoring vegetation change. The authors tended to use conventional (OLS) 

regression as the basic approach for definition of relationships between NDVI and other 

environment and biophysical variables. However, these conventional statistical methods, 

especially by quantifying spatial relationships at regional or global scales, are usually not 

adequate for spatially extended data. In ArcGIS the OLS tool basically will automatically scan 

for problems associated between the variables under study and automatically checks for 

redundancy as well as computes standard error values. This approach assumes the constancy 

of this relationship at every point of the analysis space, i.e. uniformity over space. 

Unfortunately, in many cases this relationship is not stable in space and appears to vary over 

space (Foody, 2003), (Ji and Peters, 2004). In such circumstances, the parameters of the global 

regression model derived by applying conventional OLS regression may not represent local 

conditions within the study area which might have high variance of relief conditions. Moving 

window local regression techniques (MWR) and geographically weighted regression (GWR) 

might overcome this problem and calculate the model parameters varying in space. These 

techniques are believed to provide a more appropriate and accurate basis in our case for 

descriptive and predictive proposals and are quite common in geography ((Stewart 

Fotheringham et al., 1996); (BOSTAN, 2013); (Propastin, 2007); (Zhou and Leung, 2010). Several 

authors such as (Propastin, 2007), (Foody, 2003)); (Castillo-Santiago et al., 2013); (Imran et al., 

2015); (Li et al., 2016b) confirmed that, there are only a very limited studies in the field of 
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remote sensing in which local regression techniques for analyzing of spatial relationships 

between NDVI and other biophysical variables have been applied. 

Moving window regression 

Several statistical analysis processes are used for estimating the relationships among variables. 

They include moving window regression (MWR) and other techniques for analyzing and 

modeling the relationship for instance between NDVI values and its predicting variables for 

each point (Propastin, 2007). By moving a window (MWR) of specific size over the study region, 

both regression and parameters for each pixel are quantified separately from the other points. 

The size of the moving window can be identified depending on the size of the study region and 

can be varied from one area to another. All data that lie within the selected window will be 

estimated and calibrated. This process is repeated for all regression points. Additionally, the 

process will continue and the local estimated results can be viewed and mapped for each 

locations of regression points (Fotheringham et al., 2003).  

This relationship between the variables within MWR can be expressed as:  

  y ( ) ( )X      ,            

where   indicates that the parameters are to be estimated at a location. 

4.2.10. Geographically weighted regression (GWR)                                                        

Geographically weighted regression is known as a local form of linear regression often used to 

model spatially varying relationships. Therefore, it works similarly to the moving window 

regression except that it always uses a fixed bandwidth and inverse distance weighted kernel. 

Then each point data will weight by its distance from the regression point. In the local 

regression, the point closer to the regression is weighted higher than the points further away. 

In GWR all observations are weighted in accordance with its distance to location i so that the 

weighting of an observation varies with i. The matrix form of parameter estimation for i is 

expressed (after (Hutabarat et al., 2013) as; 

        
1

i i
T T

uui i i iW Zˆ u ,v Z u ,v Z u ,vn p W Y


    , 

where iu and iv are state the point of coordinates (latitude, longitude) in location i, ̂  is the 

parameter to be estimated and  i iW u ,v  is the weighing matrix whose diagonal elements 

representing the geographical weighting associated with each measurements site were made 

for location of i. Various methods can be used to calculate the weighting function. For fixed 

kernel size, the weight of each point might be estimated by applying Gaussian function, 

 
2

1 2ij ijW exp / d / b    , 

where ijd  is known as the distance between regression point i and data point j, and b is 

referred as a band width. Further extended description of geographic weighted regression 

and its treatments can be found in (Fotheringham et al., 2003, Foody, 2003). 
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Figure 13. Schematic overview of the model classification scheme 

4.3. Evaluation of vegetation cover’s changes in relation to the driving forces 

4.3.1. Post classification comparison 

Considerable literature, previously specified, is concerned with image classification. (Lu and 

Weng, 2007) provided a comprehensive valuable review of classification approaches and 

techniques. The classification results required high accuracy data sets for identifying detailed 

land use, land cover and vegetation with detecting the changes over time. For many purposes, 

satellite data that were collected from the earth’s surface, that represents a continuous 

variation signal needed to be categorized. All similar spectral signature pixels were grouped 

together in a process called image classification. In this technique we intended to categorize 

and group all pixels in a digital image to represent one of several land cover features or 

vegetation types and producing thematic maps with different classes types present in an image. 

Digital image processing and remote sensing classification is a multi-step process (Fig. 13) and 

the complex procedure requires consideration of many factors (Lu and Weng, 2007). Generally, 

it involves three main image classification techniques;  

 Supervised classification. 

 Unsupervised classification. 

 Object-based analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

However, supervised and unsupervised are well-known as the two most common image 

classification approach. We used automated supervised (Maximum likelihood) and 

unsupervised (Isodata) classification techniques on the combination of Landsat MSS 4,3,2,1 and 

bands 1, 2, 3, 4, 5, 7 of TM/ETM among of Landsat MSS/TMETM+ images described previously 

in Table 5. We selected then one image per decade which has low cloud cover, namely the 

images from 16.12.1972, 02.12.1984, 28.11.1994 and 20.12.2005, for image classification and 

detection of the changes in vegetation cover in the island. The near infrared wavebands (band 

7 on Landsat MSS and band 4 on the Landsat Thematic Mapper TM)/Landsat Enhanced 

Thematic Mapper Plus ETM+) facilitated an advanced land classification analysis based on 

differences in spectral reflectance of different vegetation cover types. It is therefore that the 
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vegetation pigments absorption, specific plant’s foliar reflectance and the foliar moisture 

wavelength ranges represent the basis of vegetation class analyses (Mancino et al., 2014). 

Moreover, availability of different spatial and temporal scales of vegetation cover data 

facilitates our ability to understand vegetation and ecosystem dynamics by use of several 

change detection techniques (Cohen and Fiorella, 1998, Coppin et al., 2004, Martínez and 

Gilabert, 2009). 

For this study we chose the relatively cloud free 2005-12-20 as a reference image for spectral 

signature training sites. We tested two alternative techniques, each one based on a different 

approach of signature extraction and image classification technique (Malatesta et al., 2013) 

These are Isodata with a minimum distance and the post-classification comparison. The 

effectiveness of these two methods was compared. Initially, pretreatments and post 

processing were applied to reduce the variations between the images.  

4.3.2. Unsupervised Classification 

All pre-processed image bands except the thermal and the panchromatic were stacked 

together. The three bands data Near Infrared (NIR), Red (R) and Green (G) composite image for 

the selected images was classified using ERDAS IMAGINE's ISODATA Algorithm technique 

(MacQueen, 1967) in order to group of the different vegetation types into their categories 

(classes). ISODATA is found best for image clusters and approximation to the natural structure 

of the data, rather than trying to impose an assumed structure on the data (Mahi et al., 2015), 

 
2
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  , 

where k is the number of clusters iS , i = 1, 2,..,k, and i is mean point of all the points i iX S

. 

The ISODATA is a clustering technique forming clusters and limiting the maximum number of 

groups by using the minimum spectral distance formula. According to  (Ball and Hall, 1965) it is 

an iterative procedure for the sorting of a set of multi-dimensional (multi-variable) patterns 

into subsets of patterns. (Batista, 2011) explained that “an average pattern is used to represent 

each subset of patterns and the iterative process changes the composition of these subsets and 

creating new average patterns” (Fig. 14). These new average patterns define new subsets each 

of which has reduced variation about the average pattern. The process also combines average 

patterns that are so similar that their separation fails to provide a significant amount of 

additional information about the structure of the patterns. Therefore, final image classification 

then require knowledge of each scene in order to verify what each class might represent in the 

real world. 

However, the unsupervised (Isodata) classification was initially applied to separately classify 

each image into 20 similar categories. We found the separability between these 20 classes was 

poor. So, with these trial and error iterative technique we were able to distinguish several 

terrestrial categories of vegetation by merging together small classes and producing eventually 

nine vegetation groups (classes). Finally, using Maximum Likelihood (ML) classifier of the 

supervised classification as a decision role to label each pixel was applied. Simple accuracy 

assessment was carried out to compare the final vegetation cover map with the reference field 

data. Consequentially, the confusion matrix was generated and the basic accuracy measures 
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such as producer’s and user’s accuracy as well as overall accuracy (Congalton and Green, 2008) 

were computed. In order to detect the change from a certain class to another we compared 

the four classified images of 1972-12-16, 1984 12 02, 1994-11-28 and finally 2005-12-20 in a 

pixel by pixel manner. 

    

Figure 14. First and second iteration of the ISODATA algorithm always give results similar to those in 

the figure. 

4.3.3. Supervised Classification 

In this study we applied the common supervised maximum likelihood method and minimum-

distance classification with the digital image processing software, ERDAS 2011, for our 

interpretation based on the satellite imagery.  

Initially, the most recent relatively cloud free image 2005-12-20 Landsat ETM+ was selected as 

a referenced classified image. This image is sequentially classified by both unsupervised and 

supervised maximum likelihood methods based on the spectral signature defined as training 

sites and the ground truth data. Nine vegetation categories were identified (see chapter 6). 

Supervised maximum likelihood classifiers retraining technique for an unsupervised cluster has 

been presented that constitutes a useful support for remote sensing monitoring systems based 

on multitemporal images (Banerjee et al., 2015)  

The main idea of the proposed technique is to initiate the supervised classifier through 

unsupervised clustering procedure. This approach, described by (Bruzzone and Prieto, 2001), 

“allows the generation of accurate vegetation cover maps of a specific study area from images 

for which a reliable ground truth (hence a suitable training set) is not available”.  However, after 

the cluster iteratively refined the maximum likelihood of supervised classifier makes decisions 

using the cluster statistics (Vibhute et al., 2016). For assigning spectral clusters into labeled 

classes, we used the same set of reference (training) signatures that were used for testing 

supervised classifiers. Thus, a total of 114 reference signatures represent 20 major vegetation 

cover categories in the study area to create classification results by the supervised maximum 

likelihood classifier (Loog, 2016). Consequently, more than 600 reference signatures were used 

to refine our classes into 9 major vegetation categories and provided to the maximum 

likelihood and minimum-distance (Euclidean distance) classifiers for testing and assessing the 

accuracies. 
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4.3.4. Training stage and ground truth data 

The image classification process was carried out using supervised classification. A post 

classification comparison was then conducted to reveal the most recent changes in vegetation 

cover in the study area. As post classification judgment is sensitive to the accuracy of the input 

classifications (Singh, 1989) and the sampling design is considered to be one of the most 

important processes in the collection of ground truth data (Biging et al., 1999). Therefore, we 

used a broad classification scheme to ensure highly accurate individual classifications. These 

broad classes also might reduce the effects of variations of soil conditions and sparsity of the 

vegetation, which might have caused problems if a more detailed classification scheme had 

been used to detect change. The quality and the quantity of these inputs training samples are 

essential to generate an accurate classified image. These inputs existed in the form of training 

sites, which were homogenous polygons digitized within the boundary of several different 

feature classes. For the aims of our study, the placement of these polygons was based primarily 

on the spectral reflectance of pixels as seen in different wavelength band combinations after 

the segmentation resulted from unsupervised classification with aid of the area experience 

knowledge. In addition, the previous 22 classified land cover types by (Král and Pavliš, 2006) 

were compared with the 28 classes initiated and mapped by (Malatesta et al., 2013) using 

RapidEye image with 5m pixel resolution and used to help identifying what each feature was in 

reality. The zonation of vegetation communities and distribution patterns efforts by (De Sanctis 

et al., 2013) along with the relationship between land use and the plant communities of Socotra 

Island by Attorre et al. (2014) revealed useful information to differentiate between some pixels 

of similar reflectance and comparing vegetation distribution and land cover. More than 450 

reference points and approximately 250 digital photographs with it's GPS data were also taken 

during the fieldwork 2009 to be used for similar purposes especially in areas with lack of other 

terrain data. Furthermore, during the fieldwork 2012 more than 650 of field data points have 

been collected in order to be used for further validation analysis and modelling the data. After 

a very limited manual amending applying our field knowledge, we used only the density areas 

of 100m*100m (almost 3 pixels) that consist of more than 70% of each class in the classifier 

approach. 

An example of the training sites digitized for each feature class is shown in Fig. 15. The training 

process was then repeated for each year’s image under the strong expectations hypothesis 

there are no apparently sudden decline in the whole vegetation but instead was able to sustain 

itself and it has remained until today. This evidence of various studies suggested that the most 

dominant tree species in the island with respect to their physiognomy and structure are rather 

prehistoric appearance (Balfour, 1888). For instance, the age of dragon tree (Dracaena) due to 

Humboldt (1814) (cited in; (Adolt and Pavlis, 2004) is still generally unknown and estimated by 

several thousand years. However, it has been suggested by (Bystroem, 1960) and later by 

(Symon, 1974) and (Magdefrau, 1975) a probable average age of not more than 700 years. 

Nevertheless, no authentic study on ageing of natural populations of most tree species has 

been published (Adolt and Pavlis, 2004).  The training sites digitized for each image were kept 

relatively consistent in regards to polygon sizing and placement. It is worth to be mentioned 

that several features considered to be similar were clumped together into the same class. 
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Figure 15: Training sites per ecological zones (For sites and related data see Appendix 3 

4.3.5. Selection of Change Detection Algorithms 

Earlier literature ((Lu and Weng, 2007, Ghimire et al., 2010) has been specifically addressed  

some concerns with image classification and change detection techniques. These revealed 

comprehensive reviews of classification approaches and techniques. Moreover, our ability to 

systematically study the great changes might be restricting and more difficult when historical 

time series images are either partially or totally obscured by abundant cloud cover during the 

year. Additionally to the difficulties caused by cloud cover, Landsat 7 experienced a permanent 

failure since May 2003 that has influenced all images captured by its sensor by more than 20% 

black stripes with null data. Meanwhile, data from other free satellites of the MODIS family are 

too coarse to reliably detect land cover or vegetation changes in this area, and radar data, while 

extremely useful in peering through clouds, is costly. Some parameters of the response function 

were estimated from alternative same month data and they are applied to the data to remove 

the scan stripe noise.  

However, due to our consciousness for implementing a change detection in our study, we were 

also aware of the major concerns described by (Petit and Lambin, 2001) which involved  

 Image pre-processing and topographic correction 

 Change trajectories of vegetation cover types 

 Spatial distribution of changed types  

 Selection of suitable techniques algorithms to implement change detection analyses 

 Accuracy assessment 

 Knowledge and familiarity of the study area. 

These classification techniques are based on a comparison to measure detailed change. Among 

those, we applied the most common methodology adopted in the change detection studies 

which can involve both the pixel and the object: post classification, image differencing with 

knowledge and familiarity of the study area and image ratioing. The later can only provide 

change/no-change information, whereas other techniques, such as post classification 

comparison, are known as a more vulnerable techniques and can provide a complete matrix of 

change directions by determining the changes from a certain class to another throughout the 

study period. The outputs of this stage were positive change/negative change/non-change 
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images, which classify overall changes and identify the total areas of these changes. Excel and 

SPSS were then used for further statistical analysis. 

4.3.6. Change detection methods and requirements 

Change detection has widely been used to investigate changes in land use, and disturbance of 

vegetation cover. It has been defined earlier by (Singh, 1989) as ‘‘the process of identifying 

differences in the state of an object or phenomenon by observing it at different times’’, while 

(Hussain et al., 2013) argued that vegetation change information is essential because of it's 

practical use in various environmental issues. According to (Huang et al., 2009a) the effective 

change detection should be carried out over a time period of at least 10 years. However, (Lu et 

al., 2004) discuss the difficulties in selecting the most suitable method or algorithm for change 

detection while it comprised a complex data and affected by various elements including 

spectral, spatial, temporal constraints as well as radiometric resolution, atmospheric conditions 

and soil type (Li et al., 2016c) and (Jensen, 2005). Nevertheless, these techniques of change 

detection are in rapid increase and mostly using automated approaches in detecting the 

changes within discrete time periods across a large amount of image data (Kibret et al., 2016, 

Yu et al., 2016) and (Hansen et al., 2014). Enormous researcher's efforts have resulted in 

developing various change detection methods such as traditional pixel-based (Xiao et al., 2016, 

Zhang et al., 2016, Hussain et al., 2013, Mas, 1999) and the more recently, object-based (Yu et 

al., 2016, Mather and Tso, 2016)methods. Once classes are randomly selected and field verified, 

the accuracy assessment would then run, which validates the classification in a confusion 

matrix format regarding to the ground truth data.  

 

 
Figure 16. Schematic overview of change detection and subsequent processes. 

The overall accuracy is expressed as a percentage value, and owing to (Fitzpatrick-Lins, 1980, 

Willis, 2015) and this value typically regarded acceptable for land management purposes if it is 

above 85%. The accuracy percentage and numerical pixel value are reported for each 
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vegetation class along with the number of misclassified pixels. Fig. 16 briefly describe an 

overview of change detecting approach used with the subsequent process. 

Accuracy assessment and evaluation of classification results are important processes in the 

classification methods (Lu and Weng, 2007, Gong et al., 2016, Vibhute et al., 2016). Various 

qualitative and quantitative processes can be implemented, ranging from evaluation based on 

expert knowledge to accuracy assessment based on sampling strategies. Many literatures have 

provided insight in meanings and calculation methods for these elements, earlier by (Congalton 

et al., 1983),(Smits et al., 1999) and (Foody, 2003) and in some other new studies, such as 

(Congalton and Green, 2008, Padilla et al., 2015, Fetene et al., 2016, Khorram et al., 2016). The 

error matrix based accuracy assessment method is the most common and useful method for 

the evaluation of change detection results (Foody, 2008) and (Roff et al., 2016). In this process 

it is presumed that the differences between image classification results and the reference data 

in many cases are due to the classification error (Morisette and Khorram, 2000), (Khorram, 

1999). The Cohen’s kappa coefficient was used to evaluate classification results and to measure 

the agreement between the observed accuracy with an expected accuracy (Žliobaitė et al., 

2015, Jiang et al., 2016) after (Landis and Koch, 1977a): 

0

1
c

c

p p
K̂

p





, 

where Po is probability of observed agreement, and Pc is probability of agreement by chance. 

So it measures the overall statistical agreement of an error matrix, which considers the non-

diagonal elements into account. Kappa analysis is acknowledged by many researchers as a 

powerful method for analyzing a single error matrix and then comparing the differences 

between various error matrices (Congalton and Green, 2008), (Smits et al., 1999) and , (Mubea 

et al., 2016). 

Geostatistical and spatial analysis ArcGIS 9.3/10.1 software as well as EXCEL and SPSS statistical 

functions were applied to compile the classification results and visualizing data showing the 

trends of the different vegetation cover with the areas proportions from 1972 to 2005. The 

average proportions were also calculated per each ecological zone.  

4.3.7. Estimation of the vegetation activity trends 

By analyzing a time series of yearly fluctuating data, it is possible to reveal and quantify 

variations data over the observation time period (Reed et al., 2007) and (Stosic et al., 2016). 

Consequently, this data series can be modelled by a trend line indicating the variation between 

certain limits, possibly a negative or a positive trend or constancy. For each direction of change, 

therefore, it is possible to associate a hypothesis with these trends according to the known 

elements of the data dynamics concerned (Reed et al., 2007). 

In our study, both vegetation cover and NDVI time series (mean and max NDVI in growing 

period) indicators represent an integrated measure of vegetation activity. Trends with 

significant positive or negative slope values are respectively associated with vegetation areas 

under progressive or regressive vegetation dynamics, whereas non-significant trend represent 

bare rocks or vegetation areas under stable dynamics. 

Image algebra technique has been used for detect change including image differencing, 

regression analysis and vegetation index differencing. In this technique however, two precisely 
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registered classified images were used to produce a residual image to represent changes. The 

difference then can be measured directly from the pixel values of the extracted/resulted 

images. The resulted image can be illustrated as: 

Diff (x, y) = m1(x, y) − m2(x, y), 

where m1 and m2 are images from time t1 and t2, (x, y) are the coordinates of each pixel 

and Diff is the difference image. Pixels with no change in values are distributed around the 

mean (Lu et al., 2005), while pixels with change are distributed in the tails of the distribution 

curve (Singh, 1989). As the change can occur in both directions and it is therefore up to the 

analyst to decide which image has to be subtract from which ((Gao, 2009)) thus for our 

vegetation change study we subtracted 80s NDVIs image values from the 70s images, 90s from 

80s and so on. The resulting images were threshold based on 15% changes (within ±15% 

difference "constancy" was assumed) and the areas with more than 15% increase or decrease 

in NDVI values were defined as "changed". Finally, with the aim of investigation changes in NDVI 

values, we used density slicing method mentioned by (Nath, 2014, Markos and Youssuf, Kaszta 

et al., 2016, Islam et al., 2016) to categorize the resultant NDVI change images into 11 ranges 

by using the Natural Breaks method (Jenks, 1977 cited in; (Rey et al., 2016) fixing the thresholds 

categories from very low (> 0) to very high NDVI values (>0.8). 

4.3.8. Vegetation index differencing 

The Normalized Difference Vegetation Index, NDVI, is one of the oldest spectral Vegetation 

Indices (VIs) and most widely used. It is a ratio-based index designed to evaluate the spectral 

contribution of green vegetation to multispectral observations. These indices enhance the 

spectral differences due to strong vegetation absorbing the red and strongly reflecting the near 

infrared band. They are basically well known as a ratio or a linear combination of two or 

multiple spectral bands for the change detection. The Normalized Difference Vegetation Index 

(NDVI) was computed as a ratio of the difference between near infrared (NIR) and red (R) 

reflectance for each image to the sum of both as follows:  
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where TM4 and TM3 are the NIR and R spectral bands for Landsat TM and ETM+ and MSS7 and 

MSS5 are the corresponding spectral bands from Landsat MSS. NIR and R are the near-infrared 

and red light respectively, that reflected by the vegetation and been captured by the satellite 

sensor. The NDVI is well known as a measure of photosynthetic activity, due to absorbtion of 

the red light by plant chlorophyll in the leaves and reflection of near infrared light. Therefore, 

the formula is based on the fact that chlorophyll absorbs R wave length whereas the mesophyll 

leaf structure scatters NIR waves. Thus, NDVI values range from -1 to +1, where negative values 

or close to zero of NDVI correspond to the absence of vegetation or water and generally 

correspond to barren areas of rock, sand, or sparse shrubs, whereas shrub and grassland might 

be represented with low positive values and high values indicate very dense vegetation and 

forests (F. Attorre et al., 2014) (see:  

http://earthobservatory.nasa.gov/Features/MeasuringVegetation/). 

http://earthobservatory.nasa.gov/Features/MeasuringVegetation/
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Estimating the above ground biomass during the growing period by the mean of using the 

reflectance from the red and near infrared bands of remotely sensed data acquired from 

satellite sensors to compute the vegetation indices such as the normalized difference 

vegetation index (NDVI) became a widely and well-known technique (Chen et al., 2009, Wang 

et al., 2016) , , and others). Moreover, integrating NDVI has proved to be a good measure of 

above ground biomass production (net primary production) in Sahara and semi-arid areas 

(Rasmussen, 1998) and (Begue et al., 2011). Nevertheless, reaching a saturation level is an 

associated problem only with high density biomass calculated from these sensors. It responds 

to changes in amount of chlorophyll content and biomass (Liang et al., 2005). We used the 

concept of Multi-temporal image differencing (MTID) algorithm and integrated NDVI between 

70s, 80s, 90s and 00s images under a shifted basis for NDVI of 2005. The change intensities will 

also to be rendered by summation of the absolute NDVI differences between subsequent years. 

The positive value implies a dominant change trend towards improved vegetation conditions, 

while the negative value represents deterioration tendencies in the vegetation cover. 

However, use of MTID approach in this study can provide helpful information for analysing the 

actual meaning of a pixel-by-pixel correlation analysis during the approximately forty year’s 

composite NDVI data, as well as to reveal the relationships between rainfall factor and 

vegetation coverage changes. 

4.3.9. Vegetation covers change and its driving forces 

Several studies concerning discrimination between climate and human induced change in 

vegetation cover have shown a strong relationship between inter-seasonal changes in 

vegetation activity and rainfall or temperature. Climate is well known as a substantial factor 

influencing the NDVI through amount of annual rainfall or duration of the wet season in the 

semiarid areas. This influential however, has to be identified and quantified in the study area 

with the respect to the statistically significant relationship between NDVI and rainfall in which 

it might help in discrimination between these two major factors driving vegetation change. 

Some examples of dealing with climatic signal and discrimination between human-induced and 

climate-induced degradation have been presented in the recent literature (Gang et al., 2014, 

Liu et al., 2012, Koutsodendris et al., 2015, Madin et al., 2016) and (Li et al., 2016a).  

Assessment of human activities in the island (e.g., livestock grazing, wood and grass collections 

and garden farming) will be documented with respect to the distinguished vegetation types. 

Using secondary data on the livestock trend and vegetation cover changes, in the western and 

eastern parts of the island particularly at the Hadibo, Alqalansyah towns and central mountains, 

the currently existing grazing practices, livestock and urban development expansion activities 

will be assessed in relation to their effects on the natural vegetation (Fetene et al., 2016). Small 

group discussions were conducted with relevant stakeholders of the all administrators, the 

SCDP group leaders and people’s region. Each discussion was related to the resource use by the 

communities. All results were also checked with the information provided by the SCDP 

management team and with the documented previous studies in the island. We will implement 

a simple framework system module based on the methodology proposed by (Propastin, 2007) 

to discriminate between climate and human driving forces in vegetation change. This concept 

is explained on a basic example framework (Fig. 17. In panel 16a and b the upward and 
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downward trends in NDVI and rainfall are synchronous and, obviously, can here be understood 

that the increase/decrease in vegetation cover is mainly driven by increasing or decreasing 

rainfall amounts excluding the impact of humans (even though it somehow may exist). In Fig. 

17c the positive trends in NDVI with the decrease of rainfall would be understood as a case 

when vegetation cover is recovering due to diminishing of conservation and plant protection 

activities. Increasing of rainfall without causing an improvement of vegetation cover as in panel 

16d is interpreted as a human-induced degradation of the vegetation cover. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 17. Model illustrates the relation the vegetation (NDVI, in green) and the driving forces (rainfall, 

in red, or human-induced). (a) improving vegetation cover with increase in rainfall, (b) vegetation 

degradation due to lower rainfall, (c) recovering in the vegetation cover in spite of decreasing rainfall, 

(d) degradation in vegetation cover under increasing rainfall caused by human impact. 

4.3.10. Recognition of rainfall and anthropogenic signals in the vegetation time-series  

This system would be satisfactory work in areas where relationship between trends in 

vegetation and trends in climate factors are statistically significant and strong enough. In order 

to detect these areas, trends in vegetation cover were computed and compared with trends in 

climatic predictors in each ecological zone. This task was solved in three steps. First, areas with 

statistically significant trends in vegetation activity over the study period were identified and 

extracted. Second, correlation and regression analysis with inter-seasonal time series of rainfall 

and altitude have been carried out for every pixel in the extracted areas. Third, synchrony or 

asynchrony between trends in vegetation conditions and trends in climate and latitude factors 

were analyzed and determined by comparing the trend direction of vegetation activity and 

correlation coefficient with these factors.  

For example, if a trend in vegetation cover is positive and this area reveals statistically 

significant positive correlation with rainfall, it is considered to indicate a climate (rainfall) driven 

change in vegetation cover (Fig. 17a). If a trend in vegetation cover is positive but the area 

reveals negative correlation with rainfall, it is considered to indicate an improvement of 

vegetation cover due to a decrease of human impact (Fig. 17c). The same approach was applied 

to identify climate-induced and human-induced degradation of vegetation cover (Fig.17b and 
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d). Furthermore, identification of the climate signals in the inter-seasonal dynamics of 

vegetation activity can be then used as a base methodology for discrimination between climate 

and human influence on vegetation cover. 

4.3.11. Analysis of regression residuals for identification of areas experiencing 

anthropogenic impact 

Analysis of residuals from regressions between NDVI and rainfall was undertaken in order to 

detect those areas which might not fit with scenarios as in Fig. 17). Such proposed models are 

based implicitly upon the assumption that the relationship between rainfall and NDVI under 

study area is linear (Nicholson et al., 1990a). This is because the idealistic conditions in these 

scenarios are not always to be found in the reality. It is expected that not all trends will exhibit 

asynchrony or synchrony with values of equal magnitude. Special cases of this problem are 

shown in Fig. 18). The trends in these panels are synchronous but exhibit different magnitudes. 

It means that in (Fig 18a) vegetation response to rainfall is getting worse. An opposite case is 

shown in panel 18b, here vegetation cover demonstrates increasing response to rainfall. 

For every pixel and for each year a given value of NDVI, a value of rainfall predicted by the 

regression was obtained, this value was considered to reveal the time trend in climatic 

component. The observed NDVI may show deviations from the regression line. It can be 

understood that positive deviation indicates well response of vegetation to rainfall while 

negative deviations indicate worse response. Deviations in NDVIobs from NDVIpred expressed in 

the regression residuals were computed at pixel-by-pixel basis for each decade. Then we 

calculated temporal trend of regression residuals for each pixel over the study period. Then it 

can be understood that any trend through time presented in the residuals will indicate changes 

in NDVI response not due to climatic variables. A negative trend would imply reduced response 

of vegetation cover to climate. This reduction can be caused either by a decrease of vegetation 

cover forming patchy shape distributions or by a change in plant species composition and 

structure. According to this suggestion, the area would be experiencing human induced 

degradation if negative trend is statistically significant. A positive trend would indicate 

improving in vegetation cover.  

Concerning the panels shown, Fig. 18a, shows a positive trend in residuals and, on the contrary, 

panel (b) displays a negative trend in residuals. 

 

 

 

 

 

 

 

 

Figure 18. Other cases of trends interpretation: (a) both trends are positive but the trend in vegetation 

reveals a much lower magnitude, which should indicate a slight process of degradation in spite of good 

climate conditions; (b) opposite case presenting a slight rehabilitation of vegetation cover in spite of 

rainfall decrease. 
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Chapter 5: Results, part 1 – Analysis of climatic conditions and NDVI 

5.1. Network of climate stations in the study region 

The main meteorological station in Socotra is administrated by the Civil Aviation and 

Meteorology Authority (Camargo et al.). It was established at the end of 19th century by the 

British military and with this time are associated first climate records from the region. A very 

rapid growth of 11 stations network is associated with the period of Socotra Conservation and 

Development Program (SCDP) 1997 until 2009. Many of these meteorological stations were 

abolished and abandoned because of diminishing financial support by the country government. 

In the remaining stations, climate observations have revealed many deficiencies in 

measurements and reporting. At some meteorological stations, climate observations have 

been carried out not by skilled specialists but by occasional people without any special 

education and experience which are employed for a low salary. There has been some 

improvement of the implementation of the climate network within the last years but the entire 

situation remains insufficient. For this study, climate stations in the study area were mainly 

used with respect to other authors and international sources. We used 0.5◦ rainfall data from 

the gridded monthly rainfall reanalysis of (GPCC). To verify the accuracy of these data in our 

study area, we compared available rainfall data from Mouri station from 1972 to 2010 with 

GPCC data from for the same period. We found a very high correspondence between the two 

datasets for the available time period with high positive correlation coefficient (r = +0.72). 

Nevertheless, since these are the only data available until 2000 we statistically correlated them 

with the overall data of the 11 stations. As it has been discussed earlier, the monsoon months 

of October to December provide almost three-quarters of total rainfall. In this case we 

calculated the annual rainfall in year t starting from October t to the end of September in the 

next year t+1. The general characteristics of the stations are listed in Table 8 and the spatial 

distribution is shown in Fig. 19. The network seems to exhibit insufficient density of the climate 

stations, particularly in the southern part of the island. Mean distance between the climate 

stations equals to approximately 15 km while distance from the station Bidholah in the south 

to the nearest station in the north is about 20 km. This density might appear insufficient due to 

the complex topography. But we must take into account that the southern portion of the island 

is occupied by a more or less straight stripe plain with an elevation of 0 - 80m over 6 km x 70 

km. Here, we do not have to expect any significant local variances in climate conditions like in 

the middle or the northern parts of the study area. 

Figure 19: Meteorological stations in the study area and their total annual rainfall (in mm, coded in 

size of green circles). 

5.2. Statistical Analysis of Rainfall Data 

5.2.1. The inter-seasonal variability of rainfall 

Arid and semi-arid climates are characterized by a high variability of climate parameters from 

one year to another, particularly extremely high rainfall variability. This causes high variability 

of ecosystem conditions and is the main driver for the difficulties of vegetation and animal’s 

survival.  
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Figure 19: Meteorological stations in the study area and their total annual rainfall (in mm, coded in 

size of green circles). 

The variability of rainfall may be illustrated with the aid of standard deviation and coefficient 

of variation (CV) for each climate station in Table 7. Throughout the study region, the variability 

in rainfall generally decreases from the north towards the south (Fig. 19), growing period 

reaches in some case up to more than 50% of annual rainfall. This might support that variability 

in rainfall plays a major role in ecosystem dynamic in the study region. The highest CV for 

growing season rainfall is in the mountainous areas (QAR and DIK) with values around 172% 

and the lowest in the coastal low land (HAD) with 64%. Our results also coincide with the theory 

by (Habrova et al., 2007) relating the key issue of extreme variability of the climate caused by 

both monsoon effect and the topography of the island, see Fig. 20 with a scatterplot of CV vs. 

elevation. They also concluded consequently that one may find a completely different 

distribution of rainfalls and shifted vegetation seasons within two sites distant just few 

kilometres. 

 

The variability of rainfall for separate seasons is higher than that for the entire growing season. 

The highest variation is associated with the climate stations in Homhil, Dihaher/Diksam, 

Qalansyiah, Mathre and Ghahandad/Qaeshbah (Fig. 21), whereas the lowest variation is found 

with Bidhollah/Nooged, Hay as Salam and Qedemeno/Momi. On the other hand, Mouri Airport 

station showed highest amount of rainfall but with slightly low inter-seasonal variability. 

Although at the stations of Dirowah, Dihaher, Ghahandad and Bidollah winter rainfall 

dominated, the monthly differences were less pronounced. Additionally, highest values of CV 

were observed in Dihaher/Diksam. 
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Figure 20. Coefficient of variation in rainfall versus elevation (m) as computed for the weather stations 

in the study area. 

Name ID Alt. (m) Year Tot. Ann. Tot. GP %GP  SD.GP CV % 

Qalansyiah 

 

QAL 3 2005 273 134 49 20 89 

3 2009 125 102 81 49 121 

Beytoh/Mayah MAY 150 2005 260 93 36 14 89 

150 2009 209 97 46 50 153 

Mathre HAD 20 2005 279 100 36 11 64 

20 2009 189 83 44 10 75 

Mouri Airport 

 

MOU 10 1972 275 229 83 45 118 

10 1984 252 221 88 44 119 

10 1994 299 270 90 53 119 

10 2005 264 112 42 22 116 

10 2009 130 102 78 18 107 

Dihaher/Diksam 

 

DIK 860 2005 328 140 43 33 142 

860 2009 151 75 50 21 169 

Dirowah/Qabhaten 

 

QEB 120 2005 192 118 61 22 112 

120 2009 139 58 42 12 128 

Ghahandad/Qaeshbah 

 

QAE 15 2005 171 115 67 19 101 

15 2009 105 70 67 11 95 

Bidhollah/Nooged 

 

NOO 10 2005 116 55 48 9 93 

10 2009 117 54 46 9 104 

Qariah 

 

QAR 30 2005 308 118 38 34 172 

30 2009 105 89 84 13 87 

Homhil 

 

HOM 350 2005 246 84 34 13 93 

350 2009 184 168 92 25 89 

Hay as Salam 

 

CEN 180 2005 180 95 53 12 77 

180 2009 205 39 19 8 125 

Qedemeno/Momi 

 

MOM 390 2005 148 59 40 10 98 

390 2009 127 84 66 35 81 

Table 7. Total annual rainfall (Tot. Ann.), rainfall during growing period (October-March; Tot. GP) as well 

as corresponding standard deviation (SD) and coefficient of variation (CV in %) for selected years for the 

12 individual climate stations in the study area. 
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This station is situated on the southern edge of the central mountain with an altitude of 860 m. 

It exhibited highest variability between seasons and for the entire growing season. As we 

discussed earlier, winter is the season with the highest variation of rainfall. Therefore, with 

comparison to other seasons and to the growing season, Mathre being the most northern 

station exhibited the lowest CV of rainfall whereas Bidhollah/Nooged being the most southern 

station exhibited a very low CV in the southern part of the island. 

 

Figure 21: Variation associated with the rainfall during the wet season for different climate stations. 

5.2.2. Rainfalls variabilities and seasonal trends 

Although time series of rainfall averaged over the study region for the period 1972-2010 include 

drought years and to some extent also present extremely dry conditions, there is clear evidence 

of a negative trend in the amount of rainfall. From late September to earlier March, winter 

monsoon winds blow from NE direction bringing the largest annual rainfall in November. This 

event affects the entire island, although the northern regions might be more influenced due to 

orographic rainfall. Fig.22 shows the rainfall peaks around November and December, but 

sometimes starting at the beginning of October. Generally, the wet period lasts till early 

February but heavy rain events might also occur in May or early September (and reaching 

incredible amounts, e.g. 211 mm in September 27th 2004 (Habrova et al., 2007).  

 
Figure 22: Observed pattern of monthly rainfall during the study period 1972 to 2010 indicating the wet 

season from October to January and a short rainfall peak in May. 
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The rainfall registered at Homhil with exceptional annual values suggested errors in 

registration. Excluding Homhil, the total annual rainfall registered on Socotra during 1972 and 

2010 was 275 and 130 mm at only Mouri station. Of these approximately 229 mm and 102 mm 

fall during the growing period of the same years respectively. We also found that the average 

annual rainfall at the 11 new stations was 189 mm for the period 2005 to 2010, while the 

average total amount using both Mouri and the new stations records was 199 mm. 

Altogether, the rainfall amount decreased during the last decades. Comparing the rainy seasons 

from 1972 to 2010 at Mouri (Fig. 23) we noticed that they occurred during the same periods 

but with variations in total amount and duration. There was slightly higher amount in rainfall 

during growing season between 1994, but later it dropped down substantially (Fig. 23). Waiting 

for the monsoon is an annual ritual of the villagers in the island. If the early summer months 

passed without rain followed by failing winter monsoon, this would have huge consequences. 

As evidence from informal interviews that we held during the fieldwork amongst the Socotra’s 

old survival people and SCDP community liaison officers as a complementary source of climatic 

information, we noted that several summer rains completely failed, such as in 1972, 1976, 

1981, 1984, 1993, 1999 and 2009. As well as several severe winter drought episodes also 

occurred during 1978 - 1979 and 1980 - 1981 and in some years rains were very light, causing 

death to lot of cattle, goats and sheep and dropping down to 40% (Scholte et al., 2008). In one 

hand, as can be seen from Fig. 23, the island exhibited dry conditions with rainfall below the 

long time-mean, on the other hand it might face severe winter floods after failing summer 

rainfall such as 1999. This is for socotranis more disastrous than these droughts (Morris, 2002). 

Figure 23: Monthly rainfall amounts (mm) at Mouri station for the period 1972 to 2010.  

The trends in rainfall over the period 2005-2010 for individual climate stations are shown in Fig. 

24 The magnitudes of trends varied by climate station and season to be analyzed. 

Unfortunately, most trend values (in a linear regression) for most stations exhibited only low 

coefficient of determination R² and were not statistically significant. The reason is the relatively 

short period of 5 years comprised for the time series analysis. Thus, only three climate stations 

exhibited significant positive trends in growing season rainfall in this late 2000 period. However, 

all examined stations with an exception of MOM exhibited significant negative trends in winter 

rainfall. As for seasonal trends of rainfall, HOM, CEN, HAD and MAY located mostly in northern 

part, facing the winter and the summer monsoon, demonstrated significant upward changes of 
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seasonal rainfall, whereas downward trends occurred in QAL DIK, QAE, NOO and QAR while 

MOM exhibited slightly significant upward trends across the seasons. The trend magnitudes 

varied only a little by climate stations but the results indicate a strong general tendency for 

winter rain. On the contrary, the trends observed from Mouri old station for the total annual 

rainfall and the growing seasons throughout study period have demonstrated statistical 

significance downwards winter trends with overall decrease values. (Fig. 24). 

 

 

 

 
Figure 24: Total annual rainfall and rainfall in the growing season (in mm) for the 11 rainfall stations in 

2005 - 2010 and for Mouri old station from 1972 - 2010, showing the trend direction. 
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5.2.3. Within season trends of rainfall 

In the previous section variations of the rainy season over the decades were examined. The 

high variability within the monsoon has generally been observed. As the relationships between 

vegetation growth and rainfall is essentially controlled by the amount and duration of rainfall 

events (Cissé et al., 2016) the total and the cumulated rainfall within the season were calculated 

over the period 1972–2010. However, within season temporal variations in rainfall resulted 

from the monsoon variability, evident decreases in rainfall are observed within season each 

decade during the growing period. There is thus good temporal trend agreement between 

rainfall for the data collected from Mouri and the recently established stations. They show 

similar rainfall characteristics behaviours. Fig. 25 depicts the major rainfall variations within the 

season.  

 

Figure 25: Typical shape of monthly rainfall during the growing period (Oct – Mar) over the study span 

1972-2010. 

5.3. Variability of vegetation distribution 

5.3.1. Average characteristics of NDVI  

The NDVI calculated from atmospherically corrected Landsat MSS, TM and ETM+ data were 

used as the variable explaining the vegetation cover. The spectral reflectance and ratios of the 

NIR and the red wavelength bands were correlated to field-measured vegetation coverages. As 

a cursory examination of pseudo color image of NDVI the bare land and rocks have a broadly 

low reflectance in the NIR and giving NDVI close to Zero while the presence of vegetation gives 

NDVI values little higher than zero. Average seasonal rainfall generally decreased from south 

to north. In the south of the study region, the rainfall achieves 55-70 mm at Nooged and 

Ghahandad/Qaeshbah, whereas the northern area is about 102 to 270 mm at Mouri during the 

wet season. Consequently, the 40-years average of NDVI ranges from less than 0.05 in the 

southern area of the study region to more than 0.8 in the plains zone. These values are stated 
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as typical values for dominant xerophytic formations by (Polyakova, 2016). Values lower than 

0.05 in the southern area indicate areas with very few to non-photosynthetic activity. These 

are rare-vegetated desert grassland or rocky areas. Rare little forested islands in the plains 

show NDVI values over than 0.5. They are placed at altitudes of more than 700 m and manifest 

a presence of vertical zonality in the study region.  

Figure 26, shows that the high reflectance of vegetation in 1972 image, with an increase in NDVI 

values while the vegetation reflectance in low in 2005. The highest average NDVI values for the 

growing season cover mostly the central mountains and the hillslopes zones. Those areas as we 

can see in the next chapter generally categorized by Miller (1990) and Liston (1996) as mostly 

dense vegetation, followed by the semi-dense montane mosaic woodland in the high plateaus 

and submontane open shrublands. Lowest reflectance values are shown at north-western and 

south-western part and some areas of low plateau zone in the study area. 

 

Figure 26: Spatial distribution of mean Max. NDVI and North-South spatial profiles in 1972 and 2005. 

Island Greenness change 

Figure 26 illustrates perfectly the change over the entire island during the period 1972 to 2005 

(see appendix 4 for more information and full extent images). The NDVI cross section curve 

rises up to 0.8 and declines again with the physio-eco zones, which present clearly the spatial 

distribution of the vegetation pattern from the north to the south coastal areas passing through 

the hillslope and the central zones. It shows also that the areas indicated as bare, rock, desert 

and very open grassland have increased gradually from 1972 to 2005. Dense vegetation and 

mosaic woodland clearly were reduced with some areas indicating shifting sand dunes. More 

NDVI changes during and between the growing seasons and further vegetation aspects will be 

consecutively discussed. 

5.3.2. Inter annual variations difference vegetation index (NDVI) 

The NDVI time series for all vegetation community in the island displays a typical inter-seasonal 

variability from 1972 to 2010 throughout the growing season. For instance, all plains and 

coastal desert grassland exhibit NDVI time series decreasing in 1984, 1994, and 2010, but little 

Spatial profile for mean Max NDVI 1972 
Spatial profile for mean Max NDVI 2005 
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to no increase in the remaining years. On the contrary, the central mountains and hillslope 

zones in somehow succeeded to preserve their situation with a little decrease (Fig.  27).  

Due to irregularity of the rainfall in the area accumulation of wet seasons in 1972, 1984 and 

1994 created a highest peak during January and February with NDVI of 0.4, 0.2 and 0.3, 

respectively (Fig. 28). The NDVI decreased in 2005 due to the failure of rainfall during the winter 

time and mostly the greenness and NVDI values depended on the summer rainfall and the fog 

existent in this period. It showed a reasonably high NDVI peak in November and December. 

Different decades showed reasonable vegetation distribution and closely correspond to our 

finding in the vegetation cover maps for the same time. The area also showed ordinal 

consistency, with short grass regions having highest NDVI, grass/shrub regions second highest 

and shrubby desert regions lowest, in agreement with values in other studies performed in the 

island. The variability in the mean and maximum per pixel in time series NDVI values 1970-2010 

is shown in Table 10. (For the seasonal variation Max and Mean NDVI images see appendix 5) 

 
Period MIN MAX/Pixel MEAN/Pixel SD MIN MAX/Pixel MEAN/Pixel SD 

70s -1 0.72 0.59 0.12 -0.66 1 0.32 0.14 

80s -1 0.91 0.63 0.1 -1 1 0.20 0.13 

90s -1 0.99 0.85 0.13 -1 1 0.34 0.18 

Mid 00s -1 0.99 0.99 0.12 -1 1 0.36 0.17 

Lat 00s -1 0.68 -0.68 0.11 -1 1 0.04 0.14 

Table 10. Inter-decadal variability in the mean (left columns) and maximum (right) values of NDVI per 

pixel in 1970-2010.   

 

 

Figure 27: Maps of 

time-integrated 

NDVI from 1972 to 

2010 (mean 

maximum within 

seasons) 
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Figure 28. NDVI 

spectra for selected 

years 1970 – 2010 

 

 

 

According to the high correlations between NDVI values and biomass density, we used a simple 

NDVI threshold approach to categorise the study region into areas with different vegetation 

coverage rank. We categorized NDVI values into different ranges with the aim of providing 

anonymity to biomass distribution over the study area. Dependent on our data we made our 

breaks value into discrete classes as 0, 0.1, 0.2, 0.3, and so on by making sure this breaks are 

the same in every image. Using geostatistical and spatial analysis as well as employing pixel 

value in excel the variation area percentage of NDVI series accounting for the island were 

computed from 70s to 00s and illustrated in figure 29. 

 

Figure 29: Histograms of spatial NDVI values distribution across the island from 1972 to 2009 

The histogram shows contentious growing of no and very sparse vegetated areas (NDVI values 

below 0.1) while the dense vegetation (> 0.5) decreased and disappeared during the 90s and 

00s.  

5.3.3. Within season variations in NDVI 

Hence, correlation is calculated for many different combinations of rainfall and NDVI, allowing 

us to identify its distinct optimum correlation (i.e. growing season). We also tried to generate 

time series of rainfall accumulated over two consecutive years and to calculate correlation 

between them and time series of NDVI. In the north and south of the island upwards trends 

spread broadly from the west border to the east. Especially high increases in NDVI were 

associated with areas covered with dense vegetation in the mountainous regions in the middle 

to north as well as the low and high plateau zones.  
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The results of this study showed that approximately 76% of all pixels exhibited significant 

positive correlation (r > 0.24) between within season monthly time series of NDVI and rainfall 

(Table 11). 

Growing Season Oct. 2005 Nov. 2005 Dec. 2005 Feb. 2006 Mar. 2006 

Correlation R 0.24 0.15 0.18 0.11 0.11 

Table 11. Pearson correlation coefficient between within season monthly time series of NDVI and 

rainfall. 

All vegetation types have a low NDVI values at the beginning of the growing season, in 

September. Generally, all vegetation types display increases in NDVI from late October into 

February, followed by gradual decreases in late March and permanent declines in July-August 

(Fig. 30, a, b, c & d). Although this increase in NDVI often happen during the second half of the 

growing season, it can be varying from year to year. In 1972 and 1984, for instance, the NDVI 

peaks in January and February with extend to March while in 1994 and 2005 the peak occurs in 

early November. Minimum NDVI values during the growing season occur at the beginning and 

end of the growing season or immediately before the of the southwest wind (June-August) 

start, while maximum values occur during the winter monsoon season in all examined decades 

except in 1972 when the maximum occurs in March. (See appendix 6 for the whole image size) 

 

 

(b 80s) 

(c 90s) 

(a 70s) 
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Figure 30: Within-season NDVI variation (a) for 70s, (b) 80s, (c) 90s and (d) 00s, respectively, with spatial 

maps on the left and histograms on the right. Highest NDVI values are associated with mid to late 

growing period, which varies between decades depending on the time of rainfall. 

Conclusion 

The NDVI time series data derived from Landsat images is a useful technique to monitor the 

vegetation changes in the study area. The growing season NDVI images show the abrupt 

transition that occurs surrounding the central mountains from the coastal plains and low 

plateaus in the south and the north of the island. The detailed pattern around the central 

mountain and hillslope zones is related mainly to variations in topography, but the overall zone 

location affects is clearly determined by the general monsoon circulation. Some unexpected 

high NDVI values can be seen within seasons due to the unanticipated rainfall events. Generally, 

the average NDVI time series of the vegetation types show uniform behavior through the 

growing season. Despite similar values of NDVI during the growing period, the sand dunes, 

shrubland, the scattered trees and grassland exhibit lower NDVI values. In December, the NDVI 

values of all three vegetation types become again almost analogous. Grassland and small 

shrubs vegetation begin it's development earlier after the first rainfall, causing sometimes early 

rise in the NDVI by end of September and the beginning of October, then the dense vegetation 

which seems to be affected by cumulative rainfall rather than the timely rains. During the 

growing period months, a rapid increase of NDVI values then follows. Usually, the NDVI 

associated with the dense vegetation turns over the zero in January. The shrub vegetation of 

higher plateaus, hillslopes culmination started in a minimum in late December or at the 

beginning of January. These zones reach the maximum value between end of December and 

mid-January, depending on the rainfall regime of the associated year. After that, the values 

gradually decrease and reaching their minimum at the end of August. As well as the dense 

vegetation regions, then its NDVI values remain high until mid-February, afterwards decreasing 

slowly until the end of the growing season. The 40-year average seasonal cycle of NDVI provides 

a clear distinction between the major vegetation behaviors. The best favorable distinction time 

between the vegetation can be obtaining within the late winter months, from December to 

February. During this time, the vegetation types in the island display quite different and clearly 

distinguishable attributes of their canopy cover such as percent coverage, and biomass, in 

(d 00s) 
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which those attributes directly affect and reflect in clear differences in long time series NDVI. 

The highest differentiation between NDVI values of the separate vegetation types is observed 

in the mid Januarys when they exhibit their maxima in dense. 

5.4. Dynamics of vegetation activity and rainfall relationships 

5.4.1. Temporal behaviour of rainfall and vegetation within the growing season  

NDVI time series are usually non-stationary (Pinzon and Tucker, 2014), i.e., they present 

different frequency components, such as seasonal and within seasonal variations, long-term as 

well as short-term rainfall fluctuations (Guo et al., 2015). Such series according to (Brown and 

de Beurs, 2008) are characterized by seasonality trends patterns and localized abrupt changes 

resulting from diverse disturbance events. The high temporal resolution of satellite offers the 

opportunity to define time profiles  definition (Borak et al., 2000) and characterize the 

vegetation dynamics on the basis of varied temporal scales essentially related to the 

aforementioned patterns. The direct correlation of rainfall anomalies with NDVI anomalies over 

the 1972–2010 time series shows a slight delay (by approx. two weeks).  Figure 31 illustrates 

the within-season cycles of NDVI and rainfall averaged over the entire island for five selected 

periods. NDVI values (1972-2010) increased rapidly during winter (early October-mid-March), 

with a highest peaked starting from December, and decreased by mid-March. As it has been 

discussed in the previous chapter, the total rainfall during the growing season at individual 

stations showed considerable variation. The overall monthly rainfall shows generally two peaks 

(Fig. 22), increasing from early April to early June, after that a clear gap follows, showing then 

an increase from late September until the next large peak in early January. During the wet 

season the maximum rainfall was reached in November and December, with an average of 180 

to 200 mm or approximately 60% of the mean annual rainfall. Minimum of rainfall occurs in 

July and August. The wet growing season is commenced approximately from October to early 

March with a high peaking started in late December to late January. The growth of vegetation 

begins after the first short growing seasons of May and then gradually decreases during July-

August, approximately value has reach down to zero. Both variations of rainfall and NDVI have 

the nearly similar trends, but NDVI curve is delayed in response to rainfall in some years. 
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Figures 31, also provides a visual comparison of rainfall and NDVI averaged over the growing 

season and the entire study period. Even by the visual comparison one can support a significant 

association between spatial patterns of NDVI and rainfall. Calculations of correlation coefficient 

proved this assumption. In the following section we will show the calculated global spatial 

correlation between both variables for every year for the period 70s to 00s. Our calculations 

resulted that weighted cumulative rainfall-NDVI correlations (Fig. 31 were between 0.96 and 

0.42 High correlations indicated a strong association between rainfall and NDVI averaged over 

growing season, with also some significant inter-seasonal variation in the magnitude of the 

correlation coefficients. 

5.4.2. Temporal behaviour of rainfall and vegetation between the growing season 

Figure 32 (a) and (b) show the mean total growing season evolution of rainfall for every pixel in 

the study region for the period 2005 and 2009 whereas (c) and (d) exhibit the NDVI within-

season cycle for the same period respectively. It shows stronger correspondence with patterns 

in rainfall amounts. These illustrations presenting Hovmoller diagrams provide a general 

overview of the dynamic of the rainfall. Nevertheless, the temporal pattern in rainfall varies in 

space. During the wet seasons the southern part of the island have a peak of rainfall with 

average of 111 to 130 mm near the center and then a rainfall lack gradually toward the east 

and west, whereas it reaches more than 150 mm in the north and central part. The 300 to over 

600 m high limestone cliffs at the northern and southern parts with elevated hillslopes and 

plateaus around the Haggeher Mountains cause orographic uplifts. Comparing both rainy 

seasons from 2005 to 2009, we notice a highly temporal variation between the two seasons in 

which it might reflect the variability and failure of rainfall in the area. The rains in south part of 

island are more common during SW monsoon during May and June and then at the beginning 

of October, when heavy rains in Northern part may also occur and is highly influenced by a rain 
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Figure 31: Within-season 

cycles of NDVI and 

cumulative rainfall for each 

decade (spatially averaged 

over the entire region) for 

1972-2010. 
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shadow with no or less rainfall than in northern part. Moreover,  this might prove the impact 

of locality and latitude by (Habrova et al., 2007). 

     

  

Figure 32: Inter-seasonal dynamics of rainfall   for (a) 2005 and (b) 2009 during the growing season 

interpolated using KED compared with the temporal behavior of (c, d) spatially averaged NDVI within 

the same time growing season, respectively.  

It might be meaningful to introduce some kind of “weighted” cumulative rainfall, indicating 

that rain is absorbed by the soil, but partially evaporated through solar radiation. A simple 

caricature of this dynamics is covered by the following equation: 

  1 10 2t t t tWCR WCR R . *WCR    10 8t tR . *WCR      ,   

where WRTt is weighted cumulative rainfall and Rt is the actual rainfall in month t. 

While cumulative rainfall (CRt = R1 + R2 + … Rt) is always increasing in t, WCRt will decrease once 

the loss 0.2*WCRt-1 exceed the new income Rt. By systematic variation we found that a factor 

of 0.8, i.e. 80% remaining to the next month, gave highest positive correlation with NDVI. 

Fig. 33, shows the corresponding scatter plot between NDVI values and weighted cumulative 

rainfall grouped and a logarithmic fit between them. The high correlation coefficient of r = 0,81 

It clearly shows that nearly 73% of all variations in log NDVI can be explained by variations in 

rainfall. This conceives a high dependence of vegetation growth on rainfall but also still a certain 

amount of NDVI variance remains unexplained. Another problem is that a spatial average over 

the entire study region gives a good general impression of the relationship between vegetation 

activity and rainfall but it response of individual vegetation types and vegetation communities 

to the climatic factor to be investigated and discussed in the following sections. To investigate 

this response, we performed correlation analysis disaggregating the territory into ecological 

areas occupied by different vegetation types. Since the relation between Mouri rainfall data 

and the other newly rainfall stations data are highly variable between the months we cannot 

estimate the rainfall before 2000s. Our only chance is to use Mouri station as a representative 

for the overall rainfall in the Island at least for the growing periods October – March. Therefore, 

we can presume a conceptual model hypothesizing that, the highly rainfall amount will not 

exceed the value of 1 in NDVI.  

(a) (b) 

(c) (d) 
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Figure 33: Scatterplot of mean NDVI values and weighted cumulative monthly rainfall for the time 

periods 1976-2005) and fit of a nonlinear (logarithmic) regression. 

These results confirm earlier findings by (Miller and Morris, 2004a, Nicholson et al., 1990a, 

Scholte and De Geest, 2010) that vegetation greenness in semiarid environments is more 

strongly related to soil moisture content and a function of rainfall accumulated over a period 

of time than to instantaneous rainfall. Reasons for a large discrepancy might be due to a large 

difference in moisture and temperature conditions over the territory of the study area and 

differential responses of vegetation cover to climate conditions such as responsiveness to 

rainfall or limitations from high temperatures. In this section we abandoned a description of 

existing influence of climatic predictors on vegetation development during the phenological 

cycle. This influence is very versatile and complicated; it reveals differently during various time-

periods of phenological cycle. We carried out a detailed investigation of relationships between 

NDVI and ecoclimatic parameters during the growing season and devoted separate section to 

the results description. Temporal responses of vegetation cover to rainfall within the growing 

season will be examined in detail in the following sections. 

At the seasonal scale, the vegetation growth seems to be highly dependent on the rainfall 

amount and its distribution during the rainy season. In the previous section, the mean effect of 

variations within the rainy season over the decade was examined. Examine year-to-year or 

inter-seasonal variations might help well understanding the impact of rainfall anomalies within 

the season on the vegetation phenology and its influence on vegetation growth. Figure 33, 

showed considerable year-to-year variation in rainfall and NDVI during the study period.  

NDVI = 0,11*ln(Rainfall) - 0,37
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Therefore, correlation coefficients between the cumulated rainfall and the maximum NDVI 

between the growing seasons exposing variability in response of vegetation to rainfall were 

significantly higher. There was a notable association between the strength of NDVI / rainfall 

relationship in according year.  

Along with the variation of the rainfall, the variability in seasonal maximum and the mean 

greenness of NDVI data was computed to determine the area of potentially higher and lower 

within-growing period variability in vegetation production, and it might be very useful to 

estimate the vegetation drought events. 

The time-integrated NDVI for each growing season was also found somehow to be closely 

correlated with rainfall (Fig 34). However, also (Herrmann et al., 2005) and (Barbosa et al., 

2015) contended that NDVI is highly sensitive to the presence, condition, and density of 

vegetation and is highly correlated with absorbed photosynthetically active radiation (PAR) and 

vegetation primary production. (Forkel et al., 2013) argued that inter-seasonal variability would 

influence the accuracy of NDVI trend change detection. So we applied a wide range of trend 

estimation methods involves regression and spatially geostatistical analyses (Fig 34). 

Changes in seasonal timing such as the start and end of season, duration of growing season, 

and maximum productivity can in turn have an impact on a large number of species that are 

dependent on natural cycles of vegetation. For all these reasons, trends in the relationship 

between the annual NDVI and rainfall may be diverse depending on internal heterogeneity of 

the eco-climatic region (Brandt et al., 2014). 

 

 

Figure 34: Seasonal average of the mean, max and cumulative rainfall (mm) are shown for the period 

from 1972 to 2010. The linear regression line (dash lines) shown with regression equations and R 

squared. 

Within seasonal rainfall distribution as we described previously in Fig. 31, showed some 

irregular groups in the growing season. The cumulative sums of deviations detected three 

periods, November/December 1994, December/January 1984 and October / November 2005, 

which had average rainfalls of 190, 170 and 60mm, respectively, whereas the island 

experienced drought periods during 2005 and 2009. Seasonal series also reflected the 

irregularity in rainfall intensity and timing, and showed a slightly decreasing trend until 

approximately end of 90s, and a considerable decrease after that year (Fig. 35). The slightly 
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decreasing trend might be detected in the first half of the seasonal series and is caused mainly 

by spring and summer rainfalls.  

Monthly rainfall distribution during the wet season has been discussed early in this study and 

found considerably variable during the last 40 years studied. It showed a maximum in October 

- November and a minimum in July - August and having both very high and very low values (Fig. 

22). For example, 132 mm was registered in November 1994 (42% of that year’s total annual 

rainfall), 43mm in December 2009 (7%) and 111 mm in December 1973 (21%). With regard to 

low values, it is very common that rainfall delayed during the wet season and some cases totally 

failure. 

For the island as a whole the analysis of spatially averaged NDVI versus rainfall in the wet season 

showed, that the Pearson correlation between synchronous data of growing season NDVI and 

rainfall was statistically significant, r2 = 0.71 (Fig. 35), however the values for each decade were 

different. At the level of individual decade, correlations with the total rainfall were also strong 

with value of 0.94, 0.43, 0.42 and 0.64, for decades, 70s, 80s, 90s and 00s, respectively.  

 
Figure 35: Correlation coefficients between NDVI and average cumulative rainfall for separate growing 

season, 70s, 80s, 90s, and 00s (and all together) with linear regression curves displayed. 

5.5. Modelling spatial patterns in rainfall parameters 

In this study, the spatial distribution of rainfall variables was incorporated in ArcMap by 

preparing gridded maps using geostatistical analysis model. Therefore, several mapping 

techniques for the interpolation of rainfall were used such as kriging/cokriging, spline-surface 

fitting, Inverse Distance Weighting (IDW), and the multivariate geostatistical method kriging 

with external drift (KED).  

The results obtained using Inverse Distance Weighting (IDW) are presented in Fig. 36. They can 

be characterized as a near gradual up-step in rainfall when going northwards. This map does 

not take into account any external influence on climate patterns. It is less smooth (Fig. 37 than 
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the corresponding map produced by kriging with external drift (KED), of Fig. 38 and 39, which 

show clearly the form of the terrain, particularly in the mid and northern parts of the study 

area. 

 
 Figure: 36 Spatial distribution of the total amount of rainfall over the growing season derived using IDW 

method. 

  

Figure 37: Performance of seasonal total rainfall with IDW interpolation. 

Despite the impact of various semivariogram techniques on the rainfall’s interpolation 

performance was low and the spatial pattern in average rainfall was varied over the event time, 

an overall averaged semivariogram interpretation was sufficient.  

Figure 38, based on KED, shows that the average annual rainfall increases markedly in the south 

east and from north to south in the western island, with clearly shows the impact of the central 

mountains, introducing different rain shadows with mean annual rain from below 100 mm at 

both sides of the mountainous area to over 239 mm inside the mountainous area. The average 

rainfall in the growing season generally increased from south to north and decreases in the 

eastern part except the heights plateau of Homhil. There are noticeable anomalies in the 

patterns caused by influence of relief on the climate, since elevation in the study region ranges 

from the sea level to over 1450 m.  
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  Figure: 38 Spatial distribution of the total amount of rainfall over the growing season derived using 

KED method (with elevation and wind direction as external drift).  

 
Figure 39:  Performance of average seasonal total rainfall with KED semivariogram interpolation, using 

additional topography information and monsoon wind direction.  

In order to assess the accuracy of the data preparation, we compared the data obtained from 

the interpolated stations with the rainfall cumulative data from the old Mouri station data. 

Average error was less than 3% for KED and about 8 % for Inverse Distance Weighting (IDW). It 

means that the approach of kriging with external drift worked more effectively. The root mean 

squared error (Nidumolu et al.) was also used as a guide to the accuracy of the prediction. For 

KED, the RMSE for 12 climate stations was less than for IDW. 

5.6. Spatial distribution of (NDVI) and Rainfall in the study area 

Rain is usually the major source for soil moisture, which is critical to plant survival and 

productivity. The amount and timing of rainfall was reported as a major factors influence the 

NDVI of native vegetation (Schultz and Halpert, 1995). Numerous studies have also shown 

presence of a time-lag between a rainfall event and the vegetation response to it, e.g. (Pu et 

al., 2008, Martiny et al., 2006, Paruelo and Lauenroth, 1998, Yang et al., 1998, Yuan et al., 2015, 

Tsai and Yang, Hocking and Kelly, 2016, Fan et al., 2016, Cissé et al., 2016). Fig. 31 illustrated 

that, there is a time-lag of estimated by 2-3 weeks between rainfall and NDVI time-series 

averaged over the whole study area. Thus, long-living trees seem to exhibit a higher impact in 

long-term NDVI time series as compared to shrubs. In this regard, the trend analysis of the NDVI 

time series reported to be more suitable for monitoring long-term vegetation changes. Along 
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with its values assessing the trend over long periods, it also can be useful in assisting the within 

seasonal changes of vegetation dynamics and reveals meaningful information on the response 

of vegetation to climate driving, such as drought events (Martínez and Gilabert, 2009).  For each 

year covered by the data set, a maximum and mean value composite NDVI image was 

generated and the total seasonal rainfall calculated. The relationship between the derived NDVI 

(dependent variable) and total rainfall (independent variable) was then generated for each 

season using geographically weighted regression analysis. This procedure allowed to assess and 

to evaluates the spatial and temporal relationship between NDVI and rainfall over the region. 

There are two factors obviously influencing the spatial patterns of vegetation and climatic 

variables in the study area; the south-north monsoon direction and altitude gradient. Generally, 

the spatial variance of NDVI and rainfall variables are strongly predicted by the south-north 

monsoon factor, but the relief conditions slightly deform this rule and make the spatial patterns 

more difficult. Vegetation and rainfall variable display similar spatial patterns. Total rainfall 

during the growing season varied and increased markedly from south to north; from about 54 

mm in Nooged (Noo) south coastal area to over 270 mm in Mouri, 401 mm in the Homhil and 

353 mm in Diksam (central mountainous zone) areas (Fig. 40).  

 

Figure 40: (a) Mean growing season NDVI calculated from the average Landsat for the period 2005-

2010. (b) Regionalized predicted rainfall amount throughout the growing season using KED.  

5.7. Conclusion 

The aim of this part of thesis is to test the temporal trend analysis in rainfall values as an 

important climate parameter influencing the vegetation variability in the island. 

In this chapter Landsat satellite data were used to evaluate the impact of within-season and 

inter-seasonal dynamics of vegetation activity and their relationship to rainfall variability on the 

natural vegetation growth of Socotra Island. The island was subdivided into six eco-zones, 

mainly homogeneous in terms of vegetation and topography type and related climate aspects. 

These zones were sufficiently large to allow the use of rainfall, NDVI satellite products, but small 

enough to properly depict the spatial heterogeneity of the rainfall and vegetation cover. 

Firstly, well-known winter monsoon rainfall was compared over nearly a 40-year period at the 

scale of the homogeneous zones. Despite differences in the cumulated rainfall amounts, rainfall 

and NDVI were strongly corresponding and well correlated over the whole region. The inter-

seasonal variations were found to correlate with the variations in vegetation phenology. This 

chapter shows how the combined analysis of rainfall data and satellite generated NDVI data 

can help to better understand the vegetation/rainfall relationships and to assess 

spatiotemporal variability in vegetation growth. The significant correlations obtained indicate 

that NDVI is a good index of the quality of the monsoon season and its (positive/negative) 

(a) (b) 
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effects and that NDVI data can be used to monitor these indicators. The next step would thus 

be the developing of a statistical prediction tool, which then could be used to predict the 

vegetation biomass during each growing season. Topography and physiographic relief features 

as well as the monsoon behaves played a major role in changing the duration of growing period 

and seasonal timing such as the start and end of season, which in turn can have an impact on a 

large number of natural vegetation species. For all these reasons, we found that trends in the 

relationship between the annual NDVI and rainfall were distinctly depending on the internal 

heterogeneity of each eco-region. For clearer understanding of the inter-seasonal variability of 

Socotra’s climate and especially in relation to the expected climate change and the variability 

between NDVI and rainfall, it could only be better established, endorsed with (Scholte et al., 

2011), by continued data collection through an enlarged meteorological station network that 

covers Socotra’s ecological zones. To extend this study, the methodology should be 

incorporated into process based vegetation growth models in order to evaluate the impacts of 

rainy season onset, cumulated rainfall and dry event on the vegetation production biomass and 

grazing practices. 
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Chapter 6: Results, part 2 – Analysis of Vegetation Cover and Vegetation Change 

This part of the thesis attempts to detect change of vegetation in the island during the last 40 

years with distinguishing the main terrestrial vegetation cover into characteristic classes.  

6.1. Classification of vegetation and description of the mapped Classes 

It is the first detailed research examining the potentiality of imagery time series to detect and 

categorising the change in the vegetation cover in Socotra island using archive Landsat images 

MSS, TM and ETM+ sensors, covering four periods of time around 1972, 1984, 1994 and 2005. 

However, it was extremely difficult to obtain multi-date data of the same time of the year 

because cloud cover is common (see chapter 3).  

To improve the classification performance and assigning classes, the variation in sun elevation 

differences and azimuth (Singh, 1989) was reduced by selecting images data belonging to the 

same time of the year (i.e. December) except end of November for 1994. Moreover, we 

implemented an atmospheric/topographic correction algorithm for our image data using 

ATCOR 3. This processing is very important to allow an optimal comparison of classifications in 

a time series as it stated by (Baraldi and Humber, 2015).  

With respect to the finding by (Carleer and Wolff, 2004) vegetation types among the study area 

present indistinct spectral features of multispectral imagery both between and within each 

type. This heterogeneity in vegetation spectra can be understood according to (Yu et al., 2006) 

and (Ehlers et al., 2016) as a result of an irregular shade or shadow accompanying vegetation 

physiognomy and floristic characteristics in the pixel values in high resolution images. 

Moreover, the rough distribution of vegetation type also created difficulties in the selection of 

training sample size for each class and for classification. Facing all those problems, we proposed 

to use a simple system of classification techniques (i.e. Image Segmentation and Euclidean 

Distance of unsupervised classification) that correspond to the spatial and spectral resolution 

of the available images as well as the heterogeneity of the acquisition dates and final scale of 

analysis to individually classify each image into 20 categories (classes). We found that the 

separability between these 20 classes was rather poor. So, these classes were reclassified and 

merged together to produce eventually 9 broad categories of vegetation cover classes on the 

basis of both physiognomic and floristic criteria.  

Finally, a supervised classification with Maximum Likelihood (ML) classifier as a decision role to 

label each pixel as the class it most closely resembles was applied. This approach involves 

reviews of huge ancillary datasets bearing in mind the previous classification attempting in the 

area and expert knowledge, as well as the comprehensive field survey in the years 2009 and 

2012.  

Characterization of these nine vegetation classes found was done by typical species comprise 

or typical physiognomy. We named these classes as presented in Table 13.  

Considering the large mapping area and the complex vegetation types (classes) in this study 

area, we expect that these new maps give sufficient information of the vegetation dynamic on 

the local level.  
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 Table 13. Major vegetation covers categories. 

Before we present the classification error and detected temporal changes, a short description 

of each class will be given. 

Mixed woodland (Class 1) occurs mainly on steep escarpments in the central mountains, hill 

slopes and deep ravines and wadies. It comprises several vegetation types that cannot be 

individually separated, including all deciduous woodland types, mixed of Commiphora 

woodland, Boswellia elongata, Boswellia ameero, Sterculia africana, Dracaena cinnabari 

woodland, Leucas and Ficus (Fig 41). The composition can be highly variable from place to 

another. This class appears in specific areas with closed canopy of trees that are higher than 4-

5 m.  

 

 
Figure 41: Spatial distribution of Mixed woodland on Socotra and the trend over last 40 years (upper 

right). 

Class Class Name Code 

1 Mix woodland WM 

2 Date Palms Dp 

3 Boswellia Bo 

4 Dracaena Dr 

5 Dwarf Shrubs DS 

6 Jatropha Ja 

7 Succulent Shrubs Ss 

8 Croton Cr 

9 Grassland Gr 
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Date palms, Phoenix dactylifera, (Class 2): Date palms plantations are one of the main 

economic activities and provide an important part of the Socotran diet on which the population 

on the island relies upon. It has been introduced to the island centuries ago, no data are 

currently available on when these species entered exactly (Morris 2002). It is an important 

traditional cultivation plant and the number of date palm gardens has enormously increased 

since the 1990s when the distribution of land-ownership was reorganized (Morris 2002). 

Nowadays, date gardens exist along most wadies on the east, north and middle part of the 

island, while also an extensive plantation was carried out on the southern areas where the soil 

is inadequate for the growth of the plant. However, it has been recently documented that date 

palms plantations have being suffering from unidentified pest which is negatively affecting fruit 

yield.  These plants are quite sensitive to saline soil and being widely spread along the wadies, 

where water-table is high, and commonly on the dune areas close to the sea (Fig. 42).  

 

 

Figure 42: Date palms plantations. 

Boswellia (Class 3), including Boswellia ameero and Boswellia elongata woodland. This class is 

dominant within several eco-zones. It shows a close coverage of trees and a dense shrub and 

herbaceous layer (Figure 43). It grows on stony limestone soils and is sometimes categorized 

as a forest with a dense shrub layer and scattered tress, including species such as Acridocarpus 

socotranus, Rhus thyrsiflora, Ruellia insignis, Gnidia socotrana, Maerua angolensis and Anisotes 

diversifolius. Boswellia elongata is among the seven endemic frankincense species of Socotra. 
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Attorre et al. (2011) stated that is difficult to judge whether it is a natural woodland formation 

that has been degraded by overgrazing or is a remnant of former plantations for gum 

production. It definitely produces the most valuable incense for human use. 

  

 

Figure 43:  Spatial distribution and temporal trend in Boswellia trees. 

Dracaena, Dracaena cinnabari (Class 4) is a typical vegetation type of Socotra that is 

characterized by the evergreen endemic tree Dracaena cinnabari which is widely distributed in 

the central mountains and normally associated with some other vegetation on limestone on 

stony or rocky soils (Fig. 44). However, it has a rather open canopy, but it is also found as a 

forest in many areas in the central mountains reaching sufficient density in Firmihin. Dracaena 

cinnabari is unique and as one of Socotra’s flagship species extremely important.  

(Beyhl and Mies, 1996) believe that this vegetation type shares it’s typical growth with another 

15 related species which have evolved under a high level of atmospheric humidity in arid 

environments, such as Socotra. It should be remarked that regions with a similar climate, such 

us the Canary Islands, Cape Verde Islands, some countries around the Mediterranean and 

Oman, were all part of the Laurasian subtropical forest about 200 million years ago.  
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Figure 44:  Spatial distribution and temporal trend in Dracaena trees. 

Dwarf shrublands (Class 5) merges all sparse dwarf shrubs of low plateaus and coastal plains 

with height usually not exceeding 1 m (Fig. 45). They are either naturally shaped by climate 

conditions and soil type or influenced by wood collection and heavy overgrazing which is often 

arise by degrading low Croton or Jatropha shrubland or trees (Miller and BAZARA, 1996).  
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Figure 45: Occurrence and dynamics of dwarf shrublands. 

Jatropha, Jatropha unicostata (Class 6), is a dominant vegetation type on Socotra, occupying 

steep hillslopes and slopes of central mountains as well as foothills of most of the limestone 

plateaus and coastal plains (Figure 46). Differences in height usually range from 2 m to 5 m. 

Sites are characterized by a higher percentage of bare rocks. This vegetation type, as noticed 

by (Malatesta et al., 2013) replaces Croton shrubs on the escarpments of hillslopes associating 

the edge of the basalt plain with the limestone high plateau.  

 
Figure 46: Spatial distribution and temporal trend in Jatropha shrubs 
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Succulent shrublands (Class 7) is a community and predominated by scattered succulent 

shrubs species (Fig. 47). It is also comprises several perennial herbaceous plants, such as 

Zygophyllum simplex, hemicryptophytes, and the Poaceae. Due to the harsh and very limiting 

environmental conditions, the spatial sequence of these communities are very similar to those 

identified along coasts of the Arabian peninsula (Kurschner and Ochyra, 2004) as interior salt 

marshes with marina vegetation Arthrocnemum macrostachyum, Limonium sokotranum and 

Urochondra setulosa communities. They are reported by (Miller and Morris, 2004a) as heavily 

grazed communities due to their palatability by small livestock and camels and are considered 

as an important rangeland providing a healthy amount of salt. This plants as descried by (De 

Sanctis et al., 2013) are naturally found dynamically linked and at different levels disturbing 

other vegetation types, such as Croton and dwarf shrubland, Dracaena and Boswellia, and 

associated with some grasslands.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 47: Distribution and dynamics of succulent shrubs. 

 

Moreover, it has been noticed that Euphorbia arbuscula and Dendrosicyos socotrana can be 

found scattered mainly with Boswellia socotrana, Commiphora ornifolia and Dracaena, in 

agreement with other studies' findings. This class comprises all drought resistant thick, fleshy 

and swollen stems plants in which the leaves stem or roots have become more than usually 

fleshy by storing water in their tissue (Wiersema and Leon, 2016). It may include several 

morphologically adapted plants from Apocynaceae, Moringaceae, Asparagaceae, Alismatales, 
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Aloaceae, Asteraceae, Malvaceae, Asclepiadoideae, such as Adenium obesum, Caralluma 

socotrana, Kalanchoe farinacea, K. rotundifolia, Dendrosicyos socotrana, Euphorbia arbuscular, 

endemic species of Echidnopsis, Aloe perryi, Duvaliandra dioscorides and Socotrella 

dolichocnema. It extends over the island from central mountains down to the coastal zones on 

steep hill slopes, passing through steep and rolling hill sides as well as in deep wadis. 

Croton shrublands, Croton socotranus (Class 8), is one of the common vegetation types in the 

island (Miller and Morris, 2004a) It is widespread over most of the ecological zones from the 

low altitudes in the coastal plains to the top central mountains, especially in the dry limestone 

plateaus and rolling hills alluvial stony soils (Fig. 48). It can be found associated with other plant 

associations such as Dactyloctenium robecchii grasslands and Aristida adscensionis, Tephrosia 

apollinea and Pulicaria stephanocarpa dwarf shrubland as well as some scattered trees, mainly 

Commiphora ornifolia, Boswellia socotrana, Euphorbia arbuscula and Dendrosycios socotrana. 

Croton socotranus community is one of the most studied plant communities on Socotra and 

has been early noted by (Popov, 1957)as a unique one. He described it as ‘Croton short grass 

community’, while (Pichi-Sermolli, 1955) defined it as ‘subdesert shrub and grass’. (White, 

1983) depicted it as ‘Somali-Masai semi-desert grassland and shrubland’, (Král and Pavliš, 2006) 

classified it as ‘Low Croton shrubs’ and finally De Sanctis et al., (2013)as ‘Croton socotranus 

shrubland’. 

 

Figure 48: Spatial distribution and temporal dynamics of Croton shrublands. 



77 
 

Grassland (Class 9) is often combined with rock outcrops, sparse vegetation and/or some open 

shrub woodlands. It is found mainly on low to moderately dissect undulated plateaus, usually 

without shrubs or with low numbers of small dwarf shrubs, often present on rocks and stones. 

It is confined to gentle slopes of the central mountains, high and low plateaus as well as the 

coastal plain (Fig. 49). Rock outcrops and sand dunes area are usually used for grazing, so they 

were incorporated into this grassland class. Grasslands in all ecological zones are facing serious 

threats from urbanization and ongoing spread of invasive plant species as well as from conflicts 

with non-overgrazing policy. This class covers several types of grassland communities, 

identified by (De Sanctis et al., 2013) as Indigofera pseudointricata, Aristida adscensionis–

Tephrosia apollinea, Dactyloctenium robecchii, Panicum atrosanguineum, Heteropogon 

contortus Eragrostis papposa–Arthraxon micans grassland as well as  Juncus socotranus 

marshland.  

 

 

Figure 49: Spatial occurrence and temporal change in grassland. 

6.2. Classification accuracy assessment 

As we have discussed in chapter 4, the accuracy of the classification is sensitive and highly 

dependent on to the sampling design and the ground truth data collection as well as the post 

classification process. The high heterogeneity of between pixels’ value in our study area might 

result of the interaction of climatic (e.g. drought) and disturbance factors (such as grazing) with 

complex topographical and geomorphological patterns, which produce different communities 
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and vegetation mosaic types. Our extrapolated vegetation cover maps are not argued to be 

without errors and therefore, some facts have to be considered: Despite cloud masking, refined 

gap filling and topographic and atmospheric corrections, vegetation in the central mountains 

and very deep undulating hillslopes zones which are dominated by perennials might behave 

differently as compared to the vegetation in the eastern and southern relatively flatted areas 

in the island. Similar vegetation type may receive different amount of annual rainfall across the 

island, partially due to the two monsoon periods mentioned in chapter 5. Moreover, the 

growing season phenology (which we defined from October to early March) can differ in 

starting date and might fail in some years in which the plant growth is inhibited with low density 

of leaves, causing decreased biomass accordingly. Moreover, sampling errors and processing 

uncertainties are usual errors associated to satellite data processing due to gaps in temporal 

data and difficult adaptation to satellite data period. 

Thus, we used a broad classification scheme to ensure highly accurate individual classifications. 

These broad classes also might reduce the effects of variations of soil conditions and sparsity 

of the vegetation, which might have caused problems if we had been aimed a detailed 

classification scheme to detect the changes. In addition, a simple accuracy assessment was 

carried out comparing our final vegetation cover classes with other findings results and with 

our intensive field training references evaluation. We used the knowledge derived in 2005 by 

(Král and Pavliš, 2006) on classified land cover in which he illustrated results of 22 terrestrial 

land cover mapping classes with sufficient spatial and thematic accuracy (overall accuracy 

estimated about 80%). We also compared the twenty-eight classes which were mapped by (De 

Sanctis et al., 2013), with an accuracy of 87%, using RapidEye image with 5 m pixel resolution 

and applying Gaussian mixture distribution model with sequential maximum a posteriori 

(SMAP) classification. Those studies were also useful to differentiate between some pixels of 

similar reflectance. Under the stronger evidence for the hypothesis described in chapter (4) 

assuming there are no apparently sudden decline in the whole vegetation along with 

assumption that vegetation species are normally in equilibrium with climate the training 

process then repeated for each year’s image. The training process with more than 600 

reference field locations was used to refine our classes and was repeated for each year’s image. 

Moreover, the digitized training sites for each image were kept relatively consistent in regards 

to polygon sizing and placement and, therefore, all features considered to be similar were 

clumped together into the same class.  

A comparison between the four classified images of 1972 Dec 16, 1984 Dec 2, 1994 Nov 28 and 

finally 2005 Dec 20 was performed in a pixel by pixel manner to detect the change from a 

certain class to another.  

Our results produce maps with moderately high classification accuracy. The common practice 

confusion matrix was computed to assess the basic accuracy measures such as producer’s and 

user’s accuracy as well as overall accuracy (Congalton and Green, 2008, Biging et al., 1999, 

Vibhute et al., 2016). 

In study area, the main sources of error were confusion between low density mixed woodland, 

grassland, succulent shrubs, Jatropha and Croton, as well as confusion between low and high 

density Dracaena and Boswellia lands. The confusion matrix of vegetation cover types using 

field observations showed that the overall accuracy of our classification was 90 %, 77%, 70% 
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and 73% for the classified images of the years 2005 (00s), 1994 (90s), 1984 (80s) and 1972 (70s), 

respectively, with an overall Kappa statistic of 0.89, 0.73, 0.65 and 0.68, respectively. User’s 

and producer’s accuracies of particular classes are listed in Table 14a-d, Figures 50a-d show the 

corresponding distribution on the island. User’s accuracies for the 00s decade ranged from 80% 

for Jatropha to 100% for date palms and producer’s accuracies ranged from 81% for dwarf 

shrubs to 100% for date palms. 

 

 

 

2005                                                                                     Reference Data 

 Classes Mw Dp Bo Dr DS Ja Ss Cr Gr Total User's 
Accuracy 

% 
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Mw 107 0 3 2 0 1 2 0 0 115 93 

Dp 0 24 0 0 0 0 0 0 0 24 100 

Bo 0 0 85 0 1 0 5 0 0 91 93 

Dr 0 0 0 56 0 0 0 0 0 56 100 

DS 0 0 0 0 39 0 1 0 3 43 91 

Ja 2 0 2 3 1 66 4 4 1 83 80 

Ss 0 0 0 0 2 4 67 4 0 77 87 

Cr 2 0 4 0 3 7 0 112 0 128 89 

Gr 0 0 1 0 2 1 2 0 52 58 90 

Total 111 24 95 61 48 79 81 120 56 675 - 

Producer's 
Accuracy 

96 100 90 92 81 84 83 93 93 - 90 

Table 14a. Confusion error matrix for the classification of the Landsat TM 2005 image using a stratified 

random sample of points over the study area, showing users and producers accuracy. (Mw = mixed 

woodland, Dp = date palms, Bo = Boswellia, Dr = Dracaena, Ds = dwarf shrubland, Ja = Jatropha, Ss = 

succulent shrubland, Cr = Croton, Gr = grassland) 

The overall Classification Accuracy is 91%, the corresponding overall Kappa Statistics is 0.886, 

which demonstrates the excellent quality of classification (according to (Landis and Koch, 

1977b, Helmer et al., 2008) as well as (Gwet, 2002, De Klerk et al., Bencherif et al.). 

With the aim of evaluating the correctness of the classification mapping results for the 

particular classes by means of the following mentioned accuracies indicators for each class in 

2005 

Figure 50 (a) 
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the four decades, we can find some indispensable misclassifications. These misclassifications 

mostly evolve particularly between spectrally similar classes, e.g. some of dwarf shrublands 

was often mistaken as grassland. This can be understood since people still use natural materials 

and dry wood in building their houses and fences which in fact might be spectrally identical 

with surroundings. 

 

 

 

 

 

 

 

 

 

 

1994                                                                       Reference Data 

Classes Mw Dp Bo Dr DS Ja Ss Cr Gr Total User’s 
Accuracy %  
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ss
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Mw 103 1 0 6 0 1 8 5 1 125 82 

Dp 0 18 0 0 0 0 0 0 0 18 100 

Bo 0 0 78 0 0 0 1 0 0 79 99 

Dr 1 0 0 49 0 2 2 0 2 56 88 

DS 0 1 1 0 39 1 3 0 7 52 75 

Ja 4 2 2 2 3 65 8 9 14 109 60 

Ss 0 1 13 0 0 1 40 0 3 58 69 

Cr 3 1 1 4 6 9 19 106 9 158 67 

Gr 0 0 0 0 0 0 0 0 20 20 100 

Total      111 24 95 61 48 79 81     120 56 675 - 

Producer’s % 
Accuracy  

93 75 82 80 81 82 49 88 36    -  77 

Table 14b. Confusion matrix for the classification of Landsat TM 1994 image (for details see Table 14a). 

The overall Classification Accuracy is 77%, the corresponding overall Kappa Statistics is 0.731, 

which is still very good. 

 

1984 

Figure 50 (c) 

1994 

Figure 50 (b) 
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1984                                                                         Reference Data 

 Classes Mw Dp Bo Dr DS Ja Ss Cr Gr Total User's 
Accuracy % 

C
la

ss
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at
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n

 D
at

a 

Mw 87 2 11 4 3 9 7 9 2 134 65 

Dp 0 16 1 0 0 0 0 0 0 17 94 

Bo 0 0 56 0 0 1 0 0 0 57 98 

Dr 5 0 7 57 1 1 5 4 1 81 70 

DS 0 1 0 0 31 6 4 3 6 51 61 

Ja 4 2 8 0 4 56 9 16 3 102 55 

Ss 2 0 4 0 0 0 47 0 2 55 86 

Cr 13 2 8 0 9 6 7 88 8 141 62 

Gr 0 1 0 0 0 0 2 0 34 37 92 

Total 111 24 95 61 48 79 81 120 56 675 - 

Producer's 
Accuracy (%) 

78 67 59 93 65 71 58 73 61 - 70 

Table 14c. Confusion matrix for the classification of Landsat TM 1984 image (for details see Table 14a). 

The overall Classification Accuracy is 70%, the corresponding overall Kappa Statistics is 0.654, 

which is good. 

 

Table 14d. Confusion matrix for the classification of Landsat TM 1972 image (for details see Table 14a). 

Figure 50 a-d: Terrestrial vegetation cover maps for the period 1972 – 2005 derived from image 

classification. (a) December 2005 (b) November 1994. (c) December 1984. (d). December 1972. 

1972                                                                    Reference Data 

 Class Mw Dp Bo Dr DS Ja Ss Cr Gr    Total User's 
Accuracy % 

C
la

ss
if

ic
at

io
n

 D
at

a 

Mw 86 0 1 3 2 1 8 6 8 115 75 

Dp 0 20 0 0 0 0 0 0 0 20 100 

Bo 1 0 88 0 0 1 2 0 4 96 92 

Dr 11 0 0 54 0 3 9 7 4 88 61 

DS 0 0 0 0 37 0 7 0 2 46 80 

Ja 8 2 2 2 5 72 11 4 11 117 62 

Ss 0 0 3 0 1 0 20 3 0 27 74 

Cr 5 2 1 2 3 2 24 100 14 153 65 

Gr 0 0 0 0 0 0 0 0 13 13 100 

Total 111 24 95 61 48 79 81 120 56     675     - 

Producer's 
Accuracy (%) 

78 88 93 89 77     91     25 84 23 -       73 

Figure 50(d) 

1972 
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The overall classification accuracy for 1972 is 73%, the corresponding overall Kappa Statistics is 

0.684, which proves that the classification is good. The Kappa statistics for comparison of given 

vegetation classes between two maps clearly indicated some differences as well as many 

similarities between maps. Therefore, with reference to the findings by (Landis and Koch, 

1977b, Helmer et al., 2008), Kappa coefficient measures of agreement between 0.6 and 0.8 are 

considered “substantial”, while kappa values above 0.8 are called “almost perfect”. The 

approach in this study of detailed mapping of vegetation cover was in overall successful for 

mapping the nine (Bryant et al.) classes in the island as described above. The results from 

overall accuracy of the error matrices indicate relatively good agreement between the 

classifications results and the field observations. However, certain components obtained higher 

scores than others. Jatropha and Croton which are represented the major component both in 

the truth data and in the classification between 1972 and 2005 were particularly well classified 

with a producer’s accuracy over 70% and user’s accuracy of over 60%. On the other hand, 

confusions remained with respect to dwarf shrubs and grassland particularly with sparse 

vegetated areas. As far as grasslands is concerned, the degree of producer’s accuracy was 

unsatisfactory from 23% to 93%, depending on the period, representing a deficit error mainly 

with respect to most class types. Although better, the producer’s user’s accuracy and for 

succulent shrubs was still around average (around 25–87%), representing a deficit or excess 

error mainly with respect to Dracaena and Boswellia classes. Those confusions underline the 

difficulties involved in accurately discriminating areas, in which we decided that more than a 

70% threshold must be included to properly categorize the class types. For instance, sparse 

vegetation in the sample could in reality represent a gradient from bare soils to fairly dense 

vegetation cover (herbaceous species, built-up area, wetland, etc.) depending on the season in 

which the image was acquired. Without recourse to seasonal multi-date monitoring, more 

precise discrimination appears to be difficult at this scale. Grouping the two classes (bare soils 

and very sparse vegetation) into one enabled us to increase the overall accuracy scores for the 

three periods concerned. 

6.3. Analysis of vegetation cover: 

The pixel values for each classified image were introduced into Microsoft Excel 2013 and SPSS 

in which it was used to handle all the statistical functions such as converting areas into square 

kilometre (km2) using the formula below as well as calculating the percentage values and 

plotting the graphs and histograms for analysis and interpretations: 

 (number of pixels in a given class) * 900 / 1000000, 

where 900 is the area of each pixel in square meters, and 1000000 is the converting number 

into km2.  

Some vegetation cover types, including the dwarf shrubs, Dracaena and Croton ecosystems, 

have declined steadily, while changes in other vegetation cover types have been slowed during 

certain times or were even temporarily reversed, such as in the case of the Boswellia and 

Jatropha areas. Grassland comprises bare areas expanded particularly in the plateaus and 

coastal zones among the western and southern parts of the island, and has more than doubled 
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since the 70s with a particular strong increase after 90s (Fig. 51). Among others habitat 

conversions were observed from mixed woodland to shrublands and from shrublands and 

dwarf shrubs to bush/shrublands colonized by encroaching plants. The area of Dracaena has 

substantial decreased from 70s to 00s while succulent shrubs and grassland areas increased. 

Dwarf shrubs and Jatropha areas remained relatively intact between 1972 and 2005, with some 

encroachment by succulent species and grassland along the coastal zone, hillslopes and the 

plateaus. However, the periods between 80s and 90s saw a massive decline in the Dracaena 

and Boswellia areas where it reduced by 22% of its 80s extent (Table 15).  

 

Figure 51: Visualization of the magnitude of vegetation change between the four decades from the 70s 

(top bar) to the 00s.  

Veg. Cover 70s 
(km2) 

% of veg. 
70s 

80s 
(km2) 

% of veg. 
80s 

90s 
(km2) 

% of veg. 
90s 

00s 
(km2) 

% of veg. 
00s 

Ave 
% 

Mixed woodland  419 12 303 8 436 12 132 4 9 

Date palms 21 1 49 1 11 0 9 0 1 

Boswellia 151 4 37 1 80 2 152 4 3 

Dracaena 226 6 211 6 47 1 113 3 4 

Dwarf shrub 646 18 757 21 624 17 627 17 18 

Jatropha 765 22 807 22 731 20 820 23 22 

Succulent 
shrublands 

165 5 153 4 226 6 326 9 6 

Croton 981 28 851 24 1045 29 563 16 24 

Grassland 175 5 439 12 407 11 849 24 13 

Table 15. Absolute area and proportions of vegetation cover for each of the nine classes for the four 

decades from 70s to 00s. 

6.4. Trend of vegetation change derived from classification 

The classified maps dated to the 70s, 80s, 90s and 00s were compared to each other using the 

logical operations to detect the change from a certain class to another resulting in the classified 

change reference map as previously shown in (Fig. 51 and Table 16). A comparison between 
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the four classified images representing four subsequent decades was performed in a pixel by 

pixel manner. The overall trend in vegetation change for the study period was determined 

based on the series of the integrated classification images in the growing seasons by fitting 

simple linear regression estimation (dependent variable Area occupied by vegetation classes; 

independent variable decades time). Since a rough estimate of the size and direction of change 

was sought, we assumed for simplicity an equidistant spacing in time (70s, 80s,90s, 00s).  

Percent of change for time periods was estimated. Once the final thematic is determined, the 

pixel values for each image are input into Excel and SPSS for further statistical analysis and 

determine the trend among the decade’s images.  

Estimation of changes since the 1970s 

Analysis of vegetation cover changes since the 1970s revealed diverse changes. Therefore, we 

used the following formula to calculate the percent of relative changes;  

100
Final value initial value

Percent  Change   *
initial value


  

If the result is negative, then this is a percentage decrease (of Table 16). 

As far as the whole island is concerned, the expanse of urban areas, bare land and grassland 

areas with incipient of sparse vegetation and bare soils (class 9) more than doubled between 

1973 and 1984 and continued expanding, until it reached more than 800 km2 (+395%) in 2005 

(Tab. 16). This is mainly due to recession of other vegetation types, such as woodland areas and 

Croton shrubs with expansion of built-up areas, the new development constructions as well as 

the fluctuation of rainfall and drought periods. Succulent shrubs showed a massive increase 

between 1984 and 2005 with almost (+97%). However, many species of this class have 

medicinal importance and are consumed by medical plants trading. On the contrary, Croton 

shrubs have decreased between 1972 and 2005 by 43%, whereas woodland areas appear to 

have decreased by 68% during the same period. Boswellia seems to have progressed regularly 

between the three periods. Nevertheless, it experienced a large decrease in the 70s and revived 

during the period 80s and 90s to reach nearly the 70s level again by 2005.  

Vegetation Cover 70s to 80s 80s to 90s 90s to 00s 70s to 00s R2 

Mixed woodland  -28 44 -70 -68 0.45 

Date palms 141 -77 -20 -56 0.25 

Boswellia -76 118 90 1 0.01 

Dracaena -7 -78 143 -50 0.59 

Dwarf shrub 17 -18 0.41 -3 0.15 

Jatropha 6 -10 12 8 0.07 

Succulent shrub -7 48 44 97 0.82 

Croton -13 23 -46 -43 0.52 

Grassland 151 -7 109 386 0.84 

Table 16. Absolut percent changes in vegetation areas between decades for the nine vegetation types. 

Decreased values are in brown colour and increased are in green.  

The proportion of Jatropha remained nearly constant over time. The rate of the changes 

appears to have been more rapid between 90s and 00s, even if we consider that between 80s 

and 90s some changes had opposite directions. 
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6.5. Detailed analysis of vegetation dynamic in the ecological zones 

Figure 52 shows local changes for the six typical ecological zones along the bioclimatic gradient 

in Socotra (see chapter 2). The central mountains area is known as steady limo Granite 

Mountains configuration (middle in the map) classified as montane mosaic of evergreen 

woodland to dense vegetation and, consist dwarf shrubs dominated by Dracaena, Boswellia, 

mixed woodland and Croton showed an overall 8.5% change between 1972 and 2005 in which 

an average of 24% decreased and 16% increase. The Wadies (valleys) showed slight variations 

in mix woodland, Jatropha and Croton with smoothly increase bare areas and sparse open 

vegetation surfaces, whereas dwarf and succulent shrubs areas increased, especially after 

1994. High plateau exhibit typical karst features with some large areas of bare pavements, 

shallow soils, gullies and cliffs. It underwent to huge proportional increases in grasslands (class 

9) and succulent shrubs (class7) while dwarf shrublands, Jatropha and Croton have steadily 

gradual changes, with an extension of the anthropic zones grow around the villages. Mixed 

woodland showed however; in one hand flexible increase during 70s, 80s and 90s, and in the 

other hand abruptly decreased in the 00s in the Low plateau with a growth of the anthropic 

zone grows around the villages and new houses, the consequence of this extension is the 

increase of the bare soils, sparse vegetation, grassland and dwarf shrublands classes. The 

Hillslopes showed slight variations in Jatropha shrubs with increase in the succulent shrubs and 

grassland after 90s, whereas the Boswellia and Dracaena was subjected to smoothly reviving 

increased after 90s. However, bare areas and sparse open vegetation and grasslands surfaces 

also increased with a corresponding decrease of Dwarf and Croton shrubs areas. Along the 

coastal plains, various distinctive formation and sharply ecosystems zone can be distinguished 

comprise of adapted perennial saline habitat predominated by succulents and dwarf shrubs, 

and therefore, capable of growing in sandy and saline soils. Likewise, (Ghazanfar and Fisher, 

2013, De Sanctis et al., 2013) argued that, this sort of arrange zonation and species composition 

of these formations might depends on several factors, such as, soil type and texture, fertility 

components, availability of water holding capacity in the soil, latitude and the sea level tidal 

effects and also the distance from the shore. Proportion of vegetation cover in each eco-zone 

during the period 1972 – 2005 observed from the satellite interpretation presented in (Fig. 53). 

The vegetation in this zone are characterized as a dynamic interactive associated with Croton 

shrubland, dwarf shrubland and grasslands, according to the level of disturbance. Scattered 

Boswellia and Mixed woodland can be also found. The woodland, date palms, dwarf shrubs and 

Jatropha in this zone decreased with increase of bare areas and grasslands. As can be seen in 

the more or less vegetation in this zone experienced overall decreased specially after 90s with 

exceptional to grassland.  

This bears witness that, the harsh and very limiting environmental conditions, with more 

intensive pressure on the vegetation from the centre to the north to south and around of the 

village, mainly for urban development, new agriculture and grazing practices, and farming 

systems socioeconomic practicing.  
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Figure 52: Dynamic of vegetation changed during study period in each ecological zone. 
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Figure 53: Proportion of vegetation cover in each eco-zone during the period 1972 – 2005 observation 

from the satellite interpretation. 

 Vegetation cover in the arid regions are characterised by many authors as rainfall drift growth 

and therefore have strongly seasonal changes. As it has been discussed in the previous 

chapters, the climate in the region follows a typical rainfall pattern, with the rainy season 

generally starting in early November and ending late February, despite large annual vibrations. 

Therefore, the period from November to March is usually the best growing season for green 

plants in the island in which we obtained the greater average rates of vegetation cover in TM 

images during these times. While during the dry season (generally from end of May to October), 

the most of the island plants gradually go into dormancy, due to a lack of water. Figure 54 

looking at the same data above but is articulating different message in which indicates the 

proportion of changes in each eco-zone of vegetation from 1972 to 2005 was vary. Most of the 

vegetation was markedly shown decrease in the coastal and low plateau zones. However, other 

vegetation cover is varied per eco-zone While the mix wood was the most vegetation class 

shows range of decrease from (-34%) in the central zone to almost (-80%) at the coastal areas.  
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Figure 54: change percentage in each eco-zone of vegetation between 70s and 00s. 

6.6. Direction of vegetation changes 

Monitoring the extent of undergoing changes in each vegetation class  the intention to 

investigate which pixels have changed from certain class to another or any other transition class 

been reported by many authors (Alberti, 2005, Townshend et al., 1992 and Mithal et al., 2013) 

as a critical due to its strong need for accurate, timely, and regularly updated extent and 

dynamics.  

Remote sensing classifier with the training samples are able to assign a vegetation cover class 

from a finite set of classes to every pixel, based on its observed spectral values (the feature 

space). Thus, every pixel is assigned a sequence of vegetation class labels corresponding to the 

time period of image collection. In this context, we explored the use of temporal sequences of 

class labelled for improving vegetation cover classification and identify trend direction within 

each class. However, to avoid misleading results, which might occur in pixels contain two or 

more vegetation cover class in our analysis we identify pixels that belong to class from 

sequences of only more than 70% vegetation class labels. However, it is important to note that 

our approach identify mixed pixels and does not provide the exact proportion of pure classes 

in the pixel. Given temporal classification results, 70s, 80s, 90s, and 00s, one can create a 

change map for any pair of time steps (T1; T2). In particular, we can show however, the type of 

improvement in both changes of negatives and positives prospective in the previous section. 

We used cross-tabulation in Arc map for detecting change as a pixel by pixel comparison 
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between two layers representing the same data for a study area at different decade’s times. 

Table 17 shows the multi temporal detecting changes in each vegetation type between the 

years 1972 and 2005 as representative of these time decades.  

Table 17. Multi-temporal context-based classification, identify pixels that changed from certain class to 

another (between time t1 and t2). The column represents the percentage areas for the period t2 and 

the rows represent the percentage areas in t1. (a) is 70s to 80s, (b) is %80s to 90s %, (c) is 90s to 00s and 

(d) is the overall from 70s to 00s. 

Those matrixes illustrate the progressive decrease in the vegetation class types and 

replacement with new or previously less dominant vegetation cover types. The diagonal axis 

represents areas that have no changed during study period. However, the overall similarities 

agreement (Total diagonal/Total area) was vary range from 23% to 30% in which reflect the 

magnitude of change almost 80% to 70%. This can be figure out as some vegetation types have 

grown by replacing others. On the other hand, it can be also understood as we observed during 

the fieldwork a domination of some species due to deterioration of others. Results shows the 

mixed woodland, Dracaena and Boswellia areas were largely superseded by Jatropha, dwarf 

and succulent shrubs and open shrublands particularly after 90s. Some cultivated land 

expanded particularly date palms in the Wadies (Valleys), the western and southern parts of 

the island, and has in 80s more than doubled since the 70s. In addition to expansion of the 

succulent shrubs, woody species have become dominant in many of the grass and shrub lands, 

likely as a result of over grazing by domestic animals. The most dramatic reduction in vegetation 

cover was seen in Croton which declined from previously about 981km2 in 1972 to about 

563km2 in the 2005 (Table 15). 
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Conclusion 

The magnitude of changes detecting reported in this section using image classification 

techniques is consistent with the greening trend in NDVI in the early sections. Our classification 

results indicate an average of the vegetation areas in the island have prospective both 

negatively and positively significantly changes during the growing season between 1972 and 

2005. All vegetated pixels exhibited statistically significant positive trends were approximately 

(20%) and exhibited relatively strong correlation more than (r=0.4) in growing season. Areas 

with negative trends in growing season were also calculated and measured. The percentage of 

these areas was (-24%). The classification results showed the area of Dracaena has substantial 

decreased from 70s to 00s while Succulent shrubs areas increased. Dwarf shrubs and Jatropha 

areas remained relatively intact between 1972 and 2005, with some encroachment by 

succulent species and grassland along the coastal zone, hillslopes and the plateaus. However, 

the periods between 80s and 90s saw a massive decline in the Dracaena and Boswellia areas 

where it reduced by 22 % of its 80s extent. Therefore, this percentage of area with trends in 

growing season was varied significantly according to vegetation cover type and the time period. 

It is particularly high for grassland and succulent shrubs in which above 90% of all pixels with 

the positive trend in growing season exhibited strong correlation (r2 >0.80) between 70s and 

00s. Mixed woodland experienced a dramatically decreased in their areas from 12 %, 8 %, 12, 

% and 4 % during 70s, 80s, 90s and 00s respectively, while grassland showed an increase by 5%, 

12%, 11, and 24% for the same periods. However, succulent shrublands and grasslands were 

observed as the most expanded vegetation classes through all ecological zones. These classes 

were grown more than its double size particularly in the low and high plateaus. Apart from 

these classes change detection results show the coastal plain and low plateau were the most 

underwent areas with more than (-40%) averaged reduced followed by the high plateau with (-

27%) whereas the central mountains and hillslopes zones were the least areas affected by 

change with only averaged (4%). Among all, Boswellia, mixed woodland and date palms were 

the most affected whereas, Jatropha, succulent shrubs and grassland were the most increased 

during the period 70s to 00s. Despite the harsh climate condition, the peripheral location of the 

islands and the strong traditional land use management practiced employed by the indigenous 

population, have both served played a significant role in the past to protect the vegetation and 

biodiversity of the Island. 
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7. Chapter 7: Detection of climate and human-induced vegetation change 

Vegetation cover is one of the major components of an ecosystem and very sensitive to changes 

of environmental factors. In our case, the main external influences are rainfall variability and 

human impact which are usually not constant over time. Socotra Island is located in the 

semiarid zone, where the rainfall is reported as the dominant natural factor which limits 

vegetation growth, especially in the growing seasons. Additionally, temperature, solar radiation 

and evaporation do have influence on vegetation, but due to (Li et al., 2008, Balakrishnaiah et 

al., 2016) they actually do not play primary roles in arid and semiarid zones, because, contrary 

to rainfall, their seasonal pattern is rather predictable. Other natural factors such as soil type, 

topography and landform do not change much on a decadal scale and thus their impacts can 

be neglect at least for the purpose of this study.  

Owing to remote sensing techniques it is possible to monitor vegetation status during relatively 

long time periods and to compare it with rainfall variability and irregularity in human influence. 

In order to simplify the analysis of the causes and trend of vegetation in our study, we only 

considered the rainfall as the major limiting factor severely affecting the vegetation and causing 

change during the growing periods. Evidences by (Richard and Poccard, 1998, Wang et al., 

2008a, Tian et al., 2015) is that in many cases, rainfall variability was a driving force for trends 

in vegetation activity in the semiarid regions. Thus, modelling the vegetation dynamic with the 

dynamics of rainfall and human induced trend might theoretically help understanding the 

individual and the combined roles of both external factors on a long time scale. It has been 

reported in many studies that the effects climate change and anthropogenic influences are 

often closely interrelated and therefore, discrimination between their causes of change in 

vegetation is rather difficult and uncertain (Propastin et al., 2008). There are number of modern 

studies that tried to discriminate between these two factors. These studies have reported that 

time series NDVI is a successfully tool to indicate vegetation deterioration and observed land 

degradation (Weiss et al., 2004, Wessels et al., 2007, (Propastin et al., 2008), (Suepa et al., 2016, 

Qu et al., 2015, Zhou et al., 2015 and Miebach et al., 2016). utilized actual deviations from the 

regression between the time series of NDVI values and rainfall data in the past as an evidence 

for vegetation response to change. The regression curve can be understood as the climatic 

signal and deviations of the measured NDVI value from the value predicted by the regression 

are interpreted as an indication of vegetation response to climate change. 

7.1. Effects of Human Activities in the island  

There are several studies which suspected increasing anthropogenic activity to be the major 

cause of vegetation deterioration in the island (Scholte et al., 2011, Malatesta et al., 2013). 

(Naumkin, 1993)), suggested that the South-Semitic nomadic tribes were the first inhabitants, 

coming to the island probably some 3000 years ago. They developed over many centuries a 

relatively balanced land management system, in order to secure self-sufficiency in food 

themselves. These traditional approach and nomadic herding patterns of use have evolved and 

strongly influenced the biodiversity of the island. These traditionally build-up indigenous 

knowledge in land use management practices employed by played a vital role in protecting 

against the over-exploitation of natural resources and the diminution of biodiversity during last 
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centuries. An obvious example of breakdown of the basic traditional rules can be perceived by 

cutting and removing of live trees for the present booming building on the island and 

consequently increasing pressure on all trees (Damme and Banfield, 2011 and Brown and Mies, 

2012b), reported that the human disturbances have catastrophic impacts on the island 

ecosystems over short timescales. In the other words (Alexander and Miller, 1995) and (Morris, 

2002) described collapsing of traditional land use practices in which have led to vegetation 

deterioration of the in the island since 1990s. 

In consequence, the recent grazing practices, such as freely opened goat grazing practices 

increased livestock numbers and therefore lead to loss control on it spatially and temporally 

((Morris, 2002) (Miller and Morris, 2004a). This situation is changing with practices have 

influenced plant communities and remarkably contributed to the current distribution and 

structure of plant populations all over the island, including endemic Commiphora, Boswellia, 

Dendrosicyos socotranus and Dracaena cinnabari (Král and Pavliš, 2006, Mies, 1993, Miller et 

al., 1996, Lisa M. Banfield et al., 2011). Nevertheless, (Král and Pavliš, 2006) argued that the 

incidence of Croton and Jatropha shrubs degradation were in one hand subjected to 

unfavorable dry tough winds and man-made biotopes and on the other hand  those were 

influenced also by heavy overgrazing and wood collection. Moreover, results from (Cronk, 

1992, Morris, 2002, Cheung et al., 2006 and Brown and Mies, 2012b) reveal that the island is 

under imminent real loss of biodiversity due to these major types of threats affecting the 

vegetation in the island and mentioned keys as: (1) the new infrastructure development (e.g. 

booming of the real estate, roads networks … etc.), (2) overgrazing due to collapsing of 

traditional grazing practices and land management’s rules, (3) invasion of exotic species and (4) 

climate changes. Those main threats are also mentioned in the IUCN report for Socotra’s World 

Heritage Nomination (IUCN, 2008). Moreover, the island seems to be swept many times by 

natural disasters, the most recent was in December 2005, and at the end of 2015 by Tsunami 

and Chapala disasters causing damage to all natural resources in the island. However, areas 

facing significant demographic expansion are seen to be affected more strongly than others. 

Thus, the greatest impacts occurred in the vicinity of the main towns as well as the easy 

accessible areas along with new asphalt roads which expand the urbanization and increased 

human activity. 

In chapter 5 we discussed the inter- and intra-seasonal relationships between NDVI and rainfall. 

Here we only will give concretization concerning the significant influential of rainfall and 

human-induced degradation in vegetation cover and examine the trends. This influential 

however, has been identified and quantified in the study area with the respect to the 

statistically relationship between NDVI and rainfall in order to help discrimination between the 

impact of these two major factors. The simple approach described in chapter 4 is based on the 

concept of synchronization between NDVI and the rainfall. Investigation results showed 

notable association trend over the study period 1972 – 2010 between NDVI and rainfall in each 

year (Fig. 55). Correlation coefficients between the (weighted) cumulated rainfall and the 

maximum NDVI at the scale of individual decades exhibited positive values which means 

generally improvement of vegetation cover in the study region driven by the higher rainfall. 

These investigation results are in agreement with the earlier published reports and finding 

results by Scholte and De Geest, 2010, Scholte and Miller et al. 2008 and (Miller and Morris, 



93 
 

2004a) in which they strongly linked the vegetation greenness in the island to soil moisture 

content and a function of rainfall accumulated over a period of time than to instantaneous 

rainfall. Even though some trends in rainfall factor were relatively weak and statistically not 

significant, they pointed into the same direction. Hence, rainfall may be considered to be the 

major driving force in the long-time change in vegetation cover (Fig. 55). 

 
Fig. 55: The time-integrated NDVI for each growing season shows somehow to be closely correlated 

with rainfall and weighted cumulative rainfall. 

The substantial decline of vegetation in the mid and late 2000 years is primarily a consequence 

of the much lower rainfall in these years and, therefore, a consequence of global climate 

change. However, as already shown in Fig. 33, the relation between NDVI and weighted 

cumulative rainfall traced over the different growing seasons is significantly different in the 

2000 years if compared with 70s to 90s. This can only be interpreted as human influence in 

which a similar amount of rainfall provided to degraded areas allows only a lower growth of 

biomass. It can be seen as an indication that the situation on Socotra, although already heavily 

stressed by unfavourable climate change, has become even more worse through inappropriate 

land management and land use. 

Our analysis of spatial vegetation cover during the last four decades revealed local changes of 

varying degrees of intensity. Results presented that mixed woodland, Dracaena, Boswellia and 

the date palms were the most decreased vegetation whereas, grassland, succulents and 

Jatropha shrubs were the types which mostly increased in area during the period 70s to 00s. 

The opposing increase in the extent of grassland and succulent shrubs is mostly concentrated 

in the northern plateaus and central part of the island, bearing witness to the intensification of 

grazing, urbanization and road networks construction, notably in the two main towns Hadebo 

and Alqalansiya. There was also a clear trend towards deforestation with a corresponding 

increase in woodland in the north and northeastern part of the island during the 90s, which has 

been also confirmed by colleagues at SCDP (personal communication). In agreed with (Brown 

and Mies, 2012b) the east and east-central part of the island, Croton and woodland appear to 
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have decreased with a corresponding increase in succulent shrublands. Elsewhere, any ‘drifts’ 

from one class to another (clearing or renewal) have tended to balance out between the 

periods and consequently do not always appear as clear logical tendencies. Fig. 56, below 

demonstrates the spatial distribution of decrease or increase for some of those mostly affected 

vegetation types. 
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Figure 56. Obvious trends of vegetation cover (increase or decrease) and spatial distribution for the 

most effected vegetation classes in Socotra Island between 70s and 00s. 

The figure above illustrates the progressive decrease in some vegetation class types and its 

replacement with new or previously less dominant vegetation cover types. Mixed woodland 

forest areas were largely seen replaced by succulent shrubs and open shrublands. However, 

some cultivated land expanded mainly date palms in the western and southern parts of the 

island particularly in the wadies (Valleys). In addition to expansion of the succulent shrubs, 

woody species have become dominant in many of the grass and shrub lands, likely as a result 

of over grazing by domestic animals. Some vegetation cover types, including the dwarf shrubs, 

Dracaena and Croton ecosystems, show steadily decline, while changes in other vegetation 

cover types have been slowly down during certain times or were even temporarily improved, 

such as in the case of the Boswellia and Jatropha areas. As we discussed in chapter 6 there are 

some grassland and bare areas expanded particularly in the plateaus and coastal zones among 

the western and southern parts of the island and have more than doubled since the 70s with a 

particular strong increase after 90s. On the one hand the more awareness and conservation 

knowledge attained by the SCDP which was established in the mid-1990s, encouraged the 

persisted vegetation surface rapidly to increase in the north, northwest, east and south parts 

of the island, but on the other hand spreading more roads with new constructed infrastructures 

and development after 1990 might played a major role in emergence of bare areas and reduce 

others vegetated areas.  

Results showed significant improvement in Dracaena, Boswellia and Jatropha areas associated 

with the period from 1991 to 2005. In which it might reflects the positively affected of the new 

institutional changes in 1990 and the prompted the island by UNESCO as one of the most 

important human heritage sites and world’s natural reserves and. Nonetheless, there also 

numerous studies reported about worsening of climate conditions over several parts of the 

island that are unfavorable for vegetation growth. 
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7.2. Conclusion 

Our results showed that human activities are predominantly observed among three plant 

communities, mixed woodland, Dracaena and Croton. Moreover, as a results of livestock and 

human pressure, the low plateau and the coastal plain have shown the most degraded zones 

whereas several grassland areas were invaded by numerous unusual and undesirable plant 

species. As the mixed woodland is severely disturbed by human settlement, the results also 

showed that several Croton and dwarf shrubs areas were targeted by severe deforestation and. 

therefore, converted into small crop farms, bare land or settlement areas. In the high plateau 

and the hillslopes zones the fuel wood collection was observed as a routine activity by the 

people from Haheboo and Alqalansiya towns. During our field work numerous people were 

observed while collecting wood resources from those areas. Observation of human and 

livestock impact on environment is much more recorded in the woody mixed zone and 

grasslands as compared to other habitat types of the Island. Results of group discussion also 

confirmed that a large portion of the communities within (Hillslope and High Plateau) and the 

nearby areas have been directly or indirectly excessively exploited Dracaena and Boswellia 

resources. It has to be taken into account that these human activities, often degrading valuable 

plant communities, have to be seen as a deteriorating factor acting additionally to the negative 

influence of climate change. 
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Chapter 8 General Discussion 

The potential vegetation change in Socotra island has been demonstrated by means of two 

directions of vegetation change investigation approaches. We used the NDVI time series based 

on spectral information from medium resolution Landsat satellite images during the wet season 

to monitor the vegetation conditions between 1972 and 2010. The second approach, we used 

the reflectance-vegetation cover relationships using different Landsat satellite images for 

varying seasonal conditions. Therefore, each previous chapter (Chap. 5-7) has its own specific 

discussion. However, this chapter will summarize the main findings with regard to the research 

questions, as well as we will discuss the findings and trying to point out the limitations and 

obstacles facing our work and outline directions for future research. Both approaches support 

our hypothesis that the island experienced rapid vegetation alterations along with the effect of 

climate change as well as by human influence. Thus coupled changes bring a pressure on the 

natural resources and plant species and therefore, a trend in biomass, vegetation cover and 

species composition on Socotra Island over the last 40 years. Our study shows the effectiveness 

of using a combination multi-temporal series of medium resolution satellite data for monitoring 

environmental and vegetation pattern/changes along with environmental variables and rainfall 

in investigating changes and mapping vegetation areas in Socotra semiarid region. This 

powerful environmental monitoring strategy, consisting of collaborative classification 

approaches, helps in discriminating ecologically meaningful vegetation cover informational 

components as mosaics of different vegetation classes. For instance, our study was able to 

represent and map classes exhibiting similar greenness, among others, and differentiate classes 

having close spectral characteristics (such as Dracaena and mixed woodland).  

To summarize the discussion, we examined the applicability of integrated NDVI during the 

growing period (GP) data compared with the variability in rainfall and the possibility of 

detecting biomass based NDVI changes and the trend of the vegetation cover in the island 

during 1972 to 2010 in chapter 5. We also quantitatively examined the dynamic vegetation 

changes and their inter-seasonal variability using advanced land classification analysis 

techniques based on differences in spectral reflectance of different vegetation cover types for 

the same period in chapter 6. The results showed a close agreement with some previous finding 

about the island, but we were able to extend substantially. We expanded our discussion on the 

detection of climate-induced and human-induced vegetation change, which is highlighted in 

chapter 7.  

Analysis of climatic conditions and NDVI in the study area  

To be able to fulfil the goal of the research objectives and answer their questions, we started 

analysing climatic conditions and NDVI in the study area. This is to highlight the spatial and 

temporal locality variation within season and inter-seasonal dynamics and to answer Q1 & Q3, 

whether the fluctuation in rainfall reflects the ongoing vegetation degradation, and to detect 

the trend and variability in vegetation cover in space and time. 

Results showed temporal variability both in the rainfalls and the vegetation cover during the 

period 1972-2010. However, rainfall variability found strongly depended on geographical 

location and elevation of the station. These results are in agreement with other published 

results by (Scholte and De Geest, 2010, Habrova et al., 2007). For individual stations, the 
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coefficient of variation in rainfall was higher than 100 in some stations. Similar to the earlier 

notice by (Cronk, 1985, Oldfield and Sheppard, 1997) we found the magnitude of rainfall 

changeability during the growing season to decrease from the north to the south. Statistical 

analysis of rainfall exhibited low inference of trends among different stations throughout the 

period 1972 - 2010. While the stations Qalansyiay (QAL), Diksam (Heuvelink et al.), Qabhaten 

(QEB), Qariah (QAR), Nooged (NOO), Qaeshbah (QAE) and Mouri (MOU) exhibited downward 

trends in growing season rainfall, four of them, Mather (HAD), Mayah (MAY), Hay as Salam 

(CEN) and Homhil (HOM), showed significant upward trends, (and Momi (MOM) showed almost 

neutral response). These results are somehow in agreement with the results obtained by 

(Habrova et al., 2007, Habrová, 2004, Haake et al., 1993, Brown and Mies, 2012a, Fritz and Okal, 

2008, Scholte and De Geest, 2010, Morris, 2002). According to these studies, the mean long 

time decrease in rainfall occurred in winter. 

The analysis of rainfall conditions and NDVI found a strong determination of the vegetation 

dynamics by the rainfall both within the growing season and on an inter-seasonal time scale. 

The correlation between NDVI and cumulative rainfall was for all vegetation types high. We 

clearly showed that nearly 73% of all variations in log NDVI can be explained by variations in 

rainfall. These results therefore conceive a high dependence of vegetation growth on rainfall 

stated by (Miller and Morris, 2004a) but still a certain amount of NDVI variance remains 

unexplained. However, stronger correlations were exhibited in areas dominated by grass 

vegetation and weaker ones in areas dominated by shrubs and trees. Our results are consistent 

with the observed relations between NDVI and climate parameters in other dry regions. It 

confirms earlier findings by (Miller and Morris, 2004a, Nicholson et al., 1990a, Scholte and De 

Geest, 2010) that vegetation greenness in the semi-arid environments is strongly associated to 

rainfall accumulated over a period of time than to instantaneous rainfall. The strength of NDVI 

vs. rainfall associations not only depended on vegetation type but there were variations in the 

response of NDVI to rainfall within each vegetation class on the per-pixel basis. Consequently, 

the less dense and less rained west region is more sensitive to both inter-seasonal and within 

seasonal variations. This might also indorse the result from (Scholte and De Geest, 2010, Brown 

and Mies, 2012a) who believed that areas above 700 m received half of the moisture 

originating from fog. Nevertheless, our results showed similar findings as by (Habrová, 2004) 

that winter monsoon in south part of island is influenced by a rain shadow with no or less 

rainfall than in northern part. These differences can be attributed to the impact of local storms 

being more frequent in the northwest during the winter and southeast in the summer times, 

being therefore greater in the upper part of the island where the vegetation is less sensitive to 

dry spells and showing a better adaptation to cope with negative or positive rainfall 

fluctuations. We were able to characterize the 40-year average seasonal cycle of NDVI and to 

provide a clear distinction between the major vegetation behaviors. This was the concern by 

some authors (Král and Pavliš, 2006 and Miller and Morris, 2004a) who mention “still 

completely lacking the long-term climatic observations from different parts of the island and 

the relationship between the NDVI and some environmental variables”. Our results confirm 

that the best distinction between the time profiles can be made within the late winter months, 

from Decembers to Februarys. During this time, the vegetation types display quite different 

and clear distinguishable attributes of their canopy such as leaf area, percent coverage, and 
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biomass. The highest discrepancy between NDVI values of the separate vegetation group types 

is observed in the mid Januarys when the vegetation types exhibit their NDVI maximums 

density. 

Assessing of spatial relationships of different vegetation types resulting from supervised 

classification with the plant foliage biomass data calculated as an average of maximum NDVI 

however, showed variability in the classes density and frequency of biomass during the last 

four decades. Among the vegetation types, Jatropha, date palm and Dracaena had the highest 

NDVI values. Examining the greenness of pixels’ value between decades 70s/80s and 80s/90s 

showed a variation of changes. Results show quite an improvement in the extent of the total 

green areas by approximately 328 km2 (9%) and 268 km2 (7%), while the lowest increase was 

shown during 90s/00s with 99 km2 (3%). 

Vegetation cover classification and vegetation type change  

To answer the second question (Q2), concerning the main vegetation types that can be 

distinguished and the magnitude of change in each different vegetation classes: We classified 

the vegetation cover and examined the dynamic changes and the temporal distribution of the 

vegetation patterns depending on the duration of the wet season for the period of 1972 to 

2005. To ensure that time series images are directly comparable to one another, an accurate 

per-pixel registration of multi-temporal Landsat image data was attained to avoid 

overestimation of mismatching errors. Our image classification approach with moderately high 

classification accuracy was able to categorise and map eventually broad categories of 

vegetation cover as classes having unique spectral characteristics, which were then similar on 

the basis of both physiognomic and floristic criteria. However, it reveals consolidate results 

indicate a detailed vegetation cover map with nine (Bryant et al.) classes in the island namely 

Mixed woodland, Date Palms, Boswellia, Dracaena, Dwarf Shrubs, Jatropha, Succulent Shrubs, 

Croton and Grassland. Our accuracy results were compared in the common practice confusion 

matrix missioned by (Congalton and Green, 2008 and Vibhute et al., 2016) in which we have to 

assess the basic accuracy measures such as producer’s and user’s accuracy as well as overall 

accuracy. Therefore, this accuracy as described in chapter 6 was assessed at various stages of 

complexity of reference databases. It was possible to classify them applying our field knowledge 

with only areas that consist of more than 70% of each class type in the classifier approach, most 

vegetation types were then classified with overall accuracy greater than 70%. The confusion 

matrix showed an overall accuracy of 90 %, 77%, 70% and 73% for the classified images years 

2005 (00s), 1994 (90s), 1984 (80s) and 1972 (70s), with an overall Kappa statistic of 0.89, 0.73, 

0.65 and 0.68, respectively. Nevertheless, some other dominant vegetation types in the island 

that closely had similar phenological appearance and sharing common elevation ranges are 

naturally overlapping each other (Schwantes et al., 2016) and show some confusion in the 

common elevation range (De Sanctis et al., 2013). The disturbance and physical factors 

associated with the mapped units and the spatial proximity and interactions among structural 

types might fruitfully highlight the ecological meaning of the units defined, giving insights about 

their adequate management (Cingolani et al., 2003). For instance, the presence of a small 

amount of massive rock outcrops and grass areas in class grassland (class 9) or in succulent 

shrubs (class 7) might indicate incipient erosion processes and suggest that this unit is recently 

under excessive grazing pressure and, therefore, must be carefully managed to prevent a 
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complete transformation into rock pavement. Other examples are class 1 and class 4, where 

woodland and Dracaena are combined with other mixed types experiencing a recession in 

these former classes and expansion of Croton and/or Jatropha. These classes are extremely 

important for vegetation diversity ((Attorre et al., 2011) and (Lisa M. Banfield et al., 2011) which 

is higher than in units where only one of those structural types dominates (e.g. class 2 or class 

8). These, as well as other examples show that classes defined as mosaics not only solve an 

important technical problem (Pietsch and Morris, 2010) but also have an emergent ecological 

meaning and reflex the bio-geomorphic feedbacks (Moffett et al., 2015), being therefore ideal 

for management purposes in markedly heterogeneous areas (Morris, 2002). 

Results on investigation trends in vegetation activity convey expansion of urban, bare land and 

grassland areas with incipient of sparse vegetation and bare soils (class 9), which more than 

doubled between 1972 and 1984 and continued expanding, until it reached more than 800 km2 

(+395%) in 2005. These results confirmed other published reports which they mentioned trends 

in vegetation activity in the island, (Tucker et al., 1991, Begue et al., 2011, Brandt et al., 2014, 

Chen et al., 2012, da Silva Rodrigues, 2014, Forkel et al., 2013, Hanafi and Jauffret, 2008, Attorre 

et al., 2007, Cassola and Wranik, 1998, Pietsch and Morris, 2010, Adolt and Pavlis, 2004). 

Nevertheless, the percentage of vegetated areas with positive and negative trends during the 

growing season was substantially different according to vegetation cover type and the time 

period. The results indicated that an average of 20% of the vegetated areas in the island showed 

significant increase of greenness during the growing season between 1972 and 2005, while 24% 

of these areas showed a significantly decrease. However, from biogeographical point of view, 

low plateau and the coastal plain were the most underwent areas with more than 40% decrease 

in their vegetated areas followed by the high plateau with more than 17% decrease, whereas 

the wadies and the central plains were the least areas affected by change with percent increase 

of 4%.  

However, our findings show Dracaena and Mixed woodland have substantially decreased from 

70s to 00s while succulent shrubs areas markedly increased. Therefore, our findings somehow 

disagree with the assumption of Martin Rejžek et al., (2016) that Dracaena in Firmihin “have 

not been replaced by any species” while H. Habrová, J. Pavliš (2015) confirm that this area has 

been rapidly overgrown by herbaceous plants. In this regards, our study confirmed the 

reduction and lack of germination for Dracaena stated by (Adolt and Pavlis, 2004, Attorre et al., 

2007, (Adolt et al., 2013 and Hubálková et al., 2015).  

Dwarf shrubs and Jatropha were the least affected in percent of total areas with some shifting 

between 1972 and 2005. Moreover, Boswellia areas exhibits critical reduced between the 

period 70s and 80s with quite improvement after 90s. As the expansion of succulent shrubs 

widely spread after 90s, the dense mixed woodland areas were largely seen reduced. It might 

have been accompanied with some encroachment by succulent species and grassland along 

the coastal zone, hillslopes and the plateaus (Senan et al., 2012), (Brown and Mies, 2012a) 

and (Miller and Morris, 2004a) Date Palms and some cultivated land expanded particularly 

among the wadies (valleys) western and southern parts of the island, and have doubled in their 

areas in the 80s.  

ArcMap cross-tabulation pixel by pixel was executed w  the intention to investigate which 

class have changed from certain class to another and monitor the extent of undergoing 
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changes. It reveals an overall similarities agreement (Total diagonal/Total area) from 23% to 

30% in which reflects the magnitude of change of more than 80% to 70%. This can be figured 

out as some vegetation types have grown by replacing others. On the other hand, it can be also 

understood, as we observed during the field work, as a domination of some species due to 

deterioration of others. Our results show that grassland, Jatropha, dwarf and succulent shrubs 

have spatially dominated over other classes particularly after 90s.  

Detection of climate and human induced vegetation change 

Results from chapter 5, 6 and 7 provide evidence to answer (Q. 1.3) that rainfall and human 

induced activities may play a significant role in deterioration of vegetation cover in the study 

area and establishing what we call a catastrophic landscape. However, we have demonstrated 

that, there are is concentration of areas of decreasing vegetation density as measured by NDVI 

throughout the island. Our results showed that human activities are predominantly observed 

among four communities of plants, the woody land, Dracaena, Croton and Boswellia. 

Moreover, as a results of livestock and human pressure, the low plateau and the coastal plain 

have shown the most degraded zones whereas several grassland areas were invaded by 

numerous unusual and undesirable plant species (as also observed by Scholte and De Geest, 

(2010) As the mixed woodland is severely disturbed by human settlement, the results also 

showed several Croton and dwarf shrubs areas were target to severe deforestation through 

conversion into small crop farms or bare lands or settlement areas. In the high plateau and the 

hillslopes zones the fuel wood collection (Ritzema, 2006) was observed as a routine activity by 

the people from Hadeboo and Alqalansiya towns. Thus during our field work a numerous 

number of people were also observed while collecting wood resources from those areas. 

Observation of human and livestock impact on environment is much more recorded in the 

woody mixed zone and grasslands (Miller and Morris, 2004a) as compared to other habitat 

types of the Island. Results of group discussion also confirmed that a large portion of the 

communities within hillslope and high plateau and the nearby areas have been directly or 

indirectly excessively exploited Dracaena and Boswellia resources.  

As we described in chapter 4 the maximum NDVI values during the growing periods for each 

pixel in the selected images between 1972 and 2005 were extracted and used to study the 

relationship between the trends in vegetation and trends in rainfall. This is in order to identify 

climate signal in the vegetation activity. Despite the complexity of human and environment 

interactions generally, results showed strong rainfall signs in the inter-seasonal dynamic of 

vegetation cover and proved that NDVI trend was significantly correlated with trends in rainfall.  

Obstacles and limitations: 

 Many obstacles and challenges were frustrating and limited the achievements of this 

research. Deficiency and lack of climatic data was one of the main limitations. The 

network seemed to exhibit insufficient density of the climate stations with lack of long 

term detailed climatic data (Scholte and De Geest 2010), with only scarce information 

covering a few years. The NDVI database has only been used to analyze whether in the 

whole of the study area there is a significant increase of NDVI as well as the role of 

climatic variables in the process.  
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 Lack of adequate temporal satellite data. It was not possible to obtain Landsat images 

of the study area for the similar time of each decade because of cloud cover and the 

limited availability of the images released by NASA. Furthermore, a malfunctioning of 

Scan Line Corrector-off acquisition mode in the Landsat TM system from May 31st of 

2003 on created a serious difficulty for which reason we got to deal more synchronously 

though the cloudy satellite data.  

 Finally, Lack of funding. This research was basically held on self-funding, except for a 

small and limited financial support from my country covering only a part of the research 

period.  

Final Conclusion 

This study presented capability of satellite-based observation to examine the long term pixel-

based change detection of vegetation from 1972 to 2010 and investigate the effects of climate 

changes by examining trend NDVI/Rainfall relationships over time. Moreover, coupled 

supervised and unsupervised classification provided satisfactory results in terms of categorizing 

and distinguishing different vegetation types. Nevertheless, our approach with moderately high 

classification accuracy was able to categorise and map eventually nine broad categories of 

vegetation cover. Use of NDVI time series provides applicable tool for characterizing vegetation 

variability and revealed inter-seasonal variation as well as motility changes in the vegetation 

types over the period of 1972-2005. The magnitude of this deviation observed depend on the 

response of the vegetation cover to the rainfall. This study also confirms findings by (Scholte 

and De Geest, 2010, Habrova et al., 2007) that the topography and physiographic relief features 

as well as the monsoon pattern play a major role in the spatial distribution of rainfall in the 

island.  

Image classification results indicated that an average of 20% of total area in the island showed 

a significant increased vegetation biomass during the growing season between 1972 and 2005, 

while 24% of the areas showed a significant decrease. However, low plateau and the coastal 

plain were the most underwent areas with more than 40% decreased in their vegetated areas 

followed by the high plateau more than 17% loss.  

Human activities are predominantly observed among the four communities of plants (the 

woody land, Dracaena, Croton and Boswellia). Moreover, as a results of livestock and human 

pressure, the low plateau and the coastal plain are shown the most degraded zones, whereas 

several grassland areas have been invaded by numerous unusual and undesirable plant species. 

Observation of human and livestock impact on environment is much more recorded in the 

mixed woody zone and grasslands as compared to other habitat types of the Island. Results of 

group discussion also confirmed that a large portion of the communities within (hillslope and 

high Plateau) and the nearby areas have been directly or indirectly excessively exploited 

Dracaena and Boswellia resources.  

Finally, it can be concluded that, despite the harsh environmental conditions faced by the 

island, that the strong traditional land use management practices employed by the indigenous 

population knowledge, have both served and played a significant role in the past to protect the 

vegetation and biodiversity of the Island (Miller and Morris, 2004a) We were able to point out 

in detail how this vegetation, being stable over centuries, has been underwent dramatic 
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changes in the last 40 years or so both by climate change and by anthropogenic activities. Our 

results also showed which vegetation types or areas, respectively, have the highest 

vulnerability and need special attention and clear management. 
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Supplementary Appendixes 

 

Appendix 1. cloud cover of Socotra Island though the last 40 years 
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Appendix 2. Illumination of clouds with clouds shadows and SLC-off image gaps and 

adjusted image (down). 

 

 

 

Image before cloud elimination.  

 

 

 

 

 

 

 

 

Image after cloud elimination.  
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Appendix 3. Training sites per ecological zones.  
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Appendix 4. Spatial distribution of NDVI series and North-South spatial profiles in 1972 and 

2005 
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Appendix 5: Maps of time-integrated NDVI from 1972 to 2010 (mean maximum within 

seasons) 
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Appendix 6. Within-season NDVI variation (a) for 70s, (b) 80s, (c) 90s and (d) 00s, 

respectively. 
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